login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072463
Shadow transform of sigma(n), A000203, starting with 0, sigma(1), sigma(2), ...
1
0, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 3, 2, 3, 2, 1, 1, 3, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 3, 3, 3, 1, 1, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 3, 2, 1, 1, 6, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 8, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 6, 1, 1, 1, 1, 1, 5, 2, 1, 3, 1, 1, 5, 1, 3, 1, 1, 1, 2, 1, 3
OFFSET
0,4
LINKS
Nicholas John Bizzell-Browning, LIE scales: Composing with scales of linear intervallic expansion, Ph. D. Thesis, Brunel Univ. (UK, 2024). See p. 39.
Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5(4) (1999), 138-150; see Definition 7 for the shadow transform.
N. J. A. Sloane, Transforms.
MAPLE
s:= n-> `if`(n=0, 0, numtheory[sigma](n)):
a:= n-> add(`if`(modp(s(j), n)=0, 1, 0), j=0..n-1):
seq(a(n), n=0..120); # Alois P. Heinz, Sep 16 2019
CROSSREFS
Cf. A000203.
Sequence in context: A270747 A214517 A230594 * A128853 A136165 A134193
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 02 2002
STATUS
approved