login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A072292
Number of proper powers b^d <= n (b > 1, d > 1).
2
0, 0, 0, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
OFFSET
1,8
COMMENTS
Base b = 1 is excluded since 1 would be 1^d for any degree d (degree of power not well defined).
LINKS
Eric Weisstein's World of Mathematics, Perfect Power.
MATHEMATICA
a[n_] := (pp = Reap[ Do[ If[b^d <= n, Sow[b^d]], {b, 2, Sqrt[n]}, {d, 2, Log[2, n]}]]; If[pp == {Null, {}}, 0, Length[ Union[ pp[[2, 1]]]]]); Table[a[n], {n, 1, 90}](* Jean-François Alcover, May 16 2012 *)
Module[{nn=10, pp}, pp=Union[Flatten[Table[a^b, {a, 2, nn}, {b, 2, nn}]]]; Accumulate[ Table[ If[ MemberQ[pp, n], 1, 0], {n, 2^nn}]]] (* Harvey P. Dale, Nov 14 2022 *)
PROG
(PARI) A072292(n)=n=floor(n)+.5; -sum(k=2, log(n)\log(2), floor(n^(1/k)-1)*moebius(k))
\\ Charles R Greathouse IV, Sep 07 2010
(Haskell)
a072292 n = a072292_list !! (n-1)
a072292_list = scanl (+) 0 $ tail a075802_list
-- Reinhard Zumkeller, May 26 2012
CROSSREFS
a(i)=A069637(i) for i<36=6^2. Cf. A001597.
Cf. A075802 (first differences).
Sequence in context: A237115 A362915 A069637 * A243282 A093390 A025789
KEYWORD
nonn,easy,nice
AUTHOR
Reinhard Zumkeller, Jul 12 2002
EXTENSIONS
Edited by Daniel Forgues, Mar 03 2009
STATUS
approved