login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071801
a(n) = binomial(2n, n) - binomial(n, floor(n/2))^2.
3
0, 1, 2, 11, 34, 152, 524, 2207, 7970, 32744, 121252, 491988, 1850380, 7455944, 28337976, 113708295, 435443490, 1742630120, 6711230900, 26811568916, 103711749284, 413849297784, 1606464657096, 6405315809516, 24935144010764, 99367486347752
OFFSET
0,3
COMMENTS
Number of lattice paths in the lattice [0..n] X [0..n] which do not pass through the point (floor(n/2),floor(n/2)). In this case, the "hole" in the lattice is at the point closest to the lattice center.
LINKS
Eric Weisstein's World of Mathematics, Lattice path.
FORMULA
a(n) = A000984(n) - A001405(n)^2.
Also, a(n) = Sum_{m=0..n} binomial(n, m)^2 - binomial(n, floor(n/2))^2.
G.f.: 1/sqrt(1-4*x) + 1/(4*x) - (4*x+1)*EllipticK(4*x)/(2*x*Pi). - Mark van Hoeij, May 01 2013
MAPLE
A071801:=n->binomial(2*n, n) - binomial(n, floor(n/2))^2: seq(A071801(n), n=0..30); # Wesley Ivan Hurt, Jan 03 2017
MATHEMATICA
Table[Binomial[2n, n] - Binomial[n, Floor[n/2]]^2, {n, 0, 20}]
PROG
(Magma) [Binomial(2*n, n) - Binomial(n, Floor(n/2))^2 : n in [0..40]]; // Wesley Ivan Hurt, Jan 03 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, Jun 06 2002
EXTENSIONS
More terms from Roger L. Bagula, Aug 28 2006
Edited by N. J. A. Sloane, Oct 08 2006
STATUS
approved