login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071564
Smallest k such that n^8+k^8, n^4+k^4, n^2+k^2, n+k are simultaneously prime.
1
1, 1, 8860, 1, 6822, 601, 7912, 65093, 81430, 11383, 5066, 54667, 9618, 28149, 236, 85, 140, 953, 1260, 119, 5206, 19555, 788, 1955, 246, 7701, 170, 255, 58514, 91511, 30750, 6237, 45508, 1725, 272, 16985, 5712, 225, 81520, 1587, 54560, 4607, 7710
OFFSET
1,3
LINKS
MATHEMATICA
Do[k = 1; While[ !PrimeQ[n + k] || !PrimeQ[n^2 + k^2] || !PrimeQ[n^4 + k^4] || !PrimeQ[n^8 + k^8], k++ ]; Print[k], {n, 1, 45}]
sk[n_]:=Module[{k=1}, While[!AllTrue[{n^8+k^8, n^4+k^4, n^2+k^2, n+k}, PrimeQ], k++]; k]; Array[sk, 45] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 01 2017 *)
PROG
(PARI) for(n=1, 7, s=1; while(isprime(s^2+n^2)*isprime(s+n)*isprime(s^4+n^4)*isprime(s^8+n^8)==0, s++); print1(s, ", "))
CROSSREFS
Sequence in context: A216926 A292572 A236031 * A031625 A046506 A116242
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 30 2002
EXTENSIONS
Edited by Robert G. Wilson v, Jun 07 2002
STATUS
approved