

A071417


Triangle of expected coupon collection numbers rounded up; i.e., if aiming to collect part of a set of n coupons, the expected number of random coupons required to receive first the set with exactly k missing.


1



0, 1, 0, 3, 1, 0, 6, 3, 1, 0, 9, 5, 3, 1, 0, 12, 7, 4, 3, 1, 0, 15, 9, 6, 4, 3, 1, 0, 19, 12, 8, 6, 4, 3, 1, 0, 22, 14, 10, 8, 6, 4, 3, 1, 0, 26, 17, 12, 9, 7, 5, 4, 3, 1, 0, 30, 20, 15, 11, 9, 7, 5, 4, 3, 1, 0, 34, 23, 17, 14, 11, 9, 7, 5, 4, 3, 1, 0, 38, 26, 20, 16, 13, 10, 8, 7, 5, 4, 3, 1, 0, 42
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150).


FORMULA

a(n, k) = ceiling(n*Sum_{j=k+1..n} 1/j) = ceiling(A067176(n, k)*k!/(n1)!) = ceiling(A008279(n, nk)*Sum_{j>=nk} j*A008277(j1, nk1)/n^j).


EXAMPLE

Rows start
0;
1,0;
3,1,0;
6,3,1,0;
9,5,3,1,0;
etc.


MATHEMATICA

Table[Ceiling[n Sum[1/j, {j, k + 1, n}]], {n, 0, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 30 2017 *)


CROSSREFS

Cf. A060293 (left hand column), A067176.
Sequence in context: A135670 A096754 A021767 * A096653 A308639 A213668
Adjacent sequences: A071414 A071415 A071416 * A071418 A071419 A071420


KEYWORD

nonn,tabl


AUTHOR

Henry Bottomley, May 29 2002


STATUS

approved



