login
A071334
Number of polyiamonds with n cells without holes that do not tile the plane.
4
0, 0, 0, 0, 0, 0, 1, 0, 20, 103, 594, 1192, 6290, 18099, 54808, 159048, 502366, 1374593, 4076218, 11378831, 32674779, 93006494, 264720498, 748062099, 2134512296, 6071524897, 17289205132, 49268564671, 140605019208, 401392287316
OFFSET
1,9
COMMENTS
From Bernard Schott, Feb 21 2020: (Start)
There exist 112 polyiamonds without holes that have from 1 to 8 cells (A070765), but only one of these polyiamonds, corresponding to a(7)= 1 cannot tile the plane. This polyiamond is called V-shaped heptiamond (see proof in Martin Gardner's link in German).
____ ____
\ /\ /\ /
\/__\/__\/
\ /\ /
\/__\/
(End)
REFERENCES
M. Gardner, Tiling with Polyominoes, Polyiamonds and Polyhexes. Chap. 14 in Time Travel and Other Mathematical Bewilderments. New York: W. H. Freeman, pp. 175-187, 1988.
LINKS
Martin Gardner, V-heptiamond, Mathematisches Labyrinth: Neue Probleme für die Knobelgemeinde, p. 118, Google books.
Craig S. Kaplan, Heesch Numbers of Unmarked Polyforms, arXiv:2105.09438 [cs.CG], 2021. See Table 5 and Table 6.
Joseph Myers, Polyiamond tiling
MATHEMATICA
A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {_, _}][[All, 2]]];
A000577 = A@000577;
A070764 = A@070764;
A071332 = A@071332;
a[n_] := A000577[[n]] - A070764[[n]] - A071332[[n]];
a /@ Range[30] (* Jean-François Alcover, Feb 21 2020 *)
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Joseph Myers, May 19 2002
EXTENSIONS
More terms from Joseph Myers, Nov 11 2003
a(29) and a(30) from Joseph Myers, Nov 21 2010
STATUS
approved