login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of polyiamonds with n cells without holes that do not tile the plane.
4

%I #25 Dec 04 2023 06:39:56

%S 0,0,0,0,0,0,1,0,20,103,594,1192,6290,18099,54808,159048,502366,

%T 1374593,4076218,11378831,32674779,93006494,264720498,748062099,

%U 2134512296,6071524897,17289205132,49268564671,140605019208,401392287316

%N Number of polyiamonds with n cells without holes that do not tile the plane.

%C From _Bernard Schott_, Feb 21 2020: (Start)

%C There exist 112 polyiamonds without holes that have from 1 to 8 cells (A070765), but only one of these polyiamonds, corresponding to a(7)= 1 cannot tile the plane. This polyiamond is called V-shaped heptiamond (see proof in Martin Gardner's link in German).

%C ____ ____

%C \ /\ /\ /

%C \/__\/__\/

%C \ /\ /

%C \/__\/

%C (End)

%D M. Gardner, Tiling with Polyominoes, Polyiamonds and Polyhexes. Chap. 14 in Time Travel and Other Mathematical Bewilderments. New York: W. H. Freeman, pp. 175-187, 1988.

%H Martin Gardner, <a href="https://books.google.com/books?id=BeagBgAAQBAJ&amp;pg=PA239">V-heptiamond</a>, Mathematisches Labyrinth: Neue Probleme für die Knobelgemeinde, p. 118, Google books.

%H Craig S. Kaplan, <a href="https://isohedral.ca/heesch-numbers-of-unmarked-polyforms/">Heesch Numbers of Unmarked Polyforms</a>

%H Craig S. Kaplan, <a href="https://arxiv.org/abs/2105.09438">Heesch Numbers of Unmarked Polyforms</a>, arXiv:2105.09438 [cs.CG], 2021. See Table 5 and Table 6.

%H Joseph Myers, <a href="http://www.polyomino.org.uk/mathematics/polyform-tiling/">Polyiamond tiling</a>

%t A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {_, _}][[All, 2]]];

%t A000577 = A@000577;

%t A070764 = A@070764;

%t A071332 = A@071332;

%t a[n_] := A000577[[n]] - A070764[[n]] - A071332[[n]];

%t a /@ Range[30] (* _Jean-François Alcover_, Feb 21 2020 *)

%Y Equals A070765-A071332 and A071333-A070764, cf. A054361, A070768.

%K nonn,hard,more

%O 1,9

%A _Joseph Myers_, May 19 2002

%E More terms from _Joseph Myers_, Nov 11 2003

%E a(29) and a(30) from _Joseph Myers_, Nov 21 2010