login
A071011
Numbers n such that n is a sum of 2 squares (i.e., n is in A001481(k)) and sigma(n) == 0 (mod 4).
1
65, 85, 125, 130, 145, 170, 185, 205, 221, 250, 260, 265, 290, 305, 340, 365, 370, 377, 410, 442, 445, 481, 485, 493, 500, 505, 520, 530, 533, 545, 565, 580, 585, 610, 629, 680, 685, 689, 697, 730, 740, 745, 754, 765, 785, 793, 820, 865, 884, 890, 901, 905
OFFSET
1,1
COMMENTS
It is conjectured that if m is not a sum of 2 squares (i.e., m is in A022544(k)) sigma(m) == 0 (mod 4).
LINKS
MATHEMATICA
Select[Range[10^3], And[SquaresR[2, #] > 0, Divisible[DivisorSigma[1, #], 4]] &] (* Michael De Vlieger, Jul 30 2017 *)
PROG
(PARI) for(n=1, 1000, if(1-sign(sum(i=0, n, sum(j=0, i, if(i^2+j^2-n, 0, 1))))+sigma(n)%4==0, print1(n, ", ")))
(Python)
from math import prod
from itertools import count, islice
from sympy import factorint
def A071011_gen(): # generator of terms
return filter(lambda n:(lambda f:all(p & 3 != 3 or e & 1 == 0 for p, e in f) and prod((p**(e+1)-1)//(p-1) & 3 for p, e in f) & 3 == 0)(factorint(n).items()), count(0))
A071011_list = list(islice(A071011_gen(), 30)) # Chai Wah Wu, Jun 27 2022
CROSSREFS
Sequence in context: A025312 A024508 A025303 * A165158 A084648 A224770
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 19 2002
STATUS
approved