login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071011
Numbers n such that n is a sum of 2 squares (i.e., n is in A001481(k)) and sigma(n) == 0 (mod 4).
1
65, 85, 125, 130, 145, 170, 185, 205, 221, 250, 260, 265, 290, 305, 340, 365, 370, 377, 410, 442, 445, 481, 485, 493, 500, 505, 520, 530, 533, 545, 565, 580, 585, 610, 629, 680, 685, 689, 697, 730, 740, 745, 754, 765, 785, 793, 820, 865, 884, 890, 901, 905
OFFSET
1,1
COMMENTS
It is conjectured that if m is not a sum of 2 squares (i.e., m is in A022544(k)) sigma(m) == 0 (mod 4).
LINKS
MATHEMATICA
Select[Range[10^3], And[SquaresR[2, #] > 0, Divisible[DivisorSigma[1, #], 4]] &] (* Michael De Vlieger, Jul 30 2017 *)
PROG
(PARI) for(n=1, 1000, if(1-sign(sum(i=0, n, sum(j=0, i, if(i^2+j^2-n, 0, 1))))+sigma(n)%4==0, print1(n, ", ")))
(Python)
from math import prod
from itertools import count, islice
from sympy import factorint
def A071011_gen(): # generator of terms
return filter(lambda n:(lambda f:all(p & 3 != 3 or e & 1 == 0 for p, e in f) and prod((p**(e+1)-1)//(p-1) & 3 for p, e in f) & 3 == 0)(factorint(n).items()), count(0))
A071011_list = list(islice(A071011_gen(), 30)) # Chai Wah Wu, Jun 27 2022
CROSSREFS
Sequence in context: A025312 A024508 A025303 * A165158 A084648 A224770
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 19 2002
STATUS
approved