|
|
A070443
|
|
a(n) = n^2 mod 21.
|
|
2
|
|
|
0, 1, 4, 9, 16, 4, 15, 7, 1, 18, 16, 16, 18, 1, 7, 15, 4, 16, 9, 4, 1, 0, 1, 4, 9, 16, 4, 15, 7, 1, 18, 16, 16, 18, 1, 7, 15, 4, 16, 9, 4, 1, 0, 1, 4, 9, 16, 4, 15, 7, 1, 18, 16, 16, 18, 1, 7, 15, 4, 16, 9, 4, 1, 0, 1, 4, 9, 16, 4, 15, 7, 1, 18, 16, 16, 18, 1, 7, 15, 4, 16, 9, 4, 1, 0, 1, 4, 9
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Sathwik Karnik, On the classification and algorithmic analysis of Carmichael numbers, arXiv:1702.08066 [math.NT], 2016. See Table 1.
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
|
|
FORMULA
|
From R. J. Mathar, Jul 27 2015: (Start)
a(n) = a(n-21).
G.f.: -x *(1+x) *(x^18 +3*x^17 +6*x^16 +10*x^15 -6*x^14 +21*x^13 -14*x^12 +15*x^11 +3*x^10 +13*x^9 +3*x^8 +15*x^7 -14*x^6 +21*x^5 -6*x^4 +10*x^3 +6*x^2 +3*x+1) ) / ( (x-1) *(1+x^6+x^5+x^4+x^3+x^2+x) *(1+x+x^2) *(1-x+x^3-x^4+x^6-x^8+x^9-x^11+x^12) ). (End)
|
|
MATHEMATICA
|
Table[Mod[n^2, 21], {n, 0, 200}] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2011 *)
PowerMod[Range[0, 90], 2, 21] (* Harvey P. Dale, Jan 19 2013 *)
|
|
PROG
|
(PARI) a(n)=n^2%21 \\ Charles R Greathouse IV, Apr 06 2016
|
|
CROSSREFS
|
Sequence in context: A070445 A070444 A120866 * A279403 A330377 A070643
Adjacent sequences: A070440 A070441 A070442 * A070444 A070445 A070446
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, May 12 2002
|
|
STATUS
|
approved
|
|
|
|