login
A070424
a(n) = 7^n mod 41.
2
1, 7, 8, 15, 23, 38, 20, 17, 37, 13, 9, 22, 31, 12, 2, 14, 16, 30, 5, 35, 40, 34, 33, 26, 18, 3, 21, 24, 4, 28, 32, 19, 10, 29, 39, 27, 25, 11, 36, 6, 1, 7, 8, 15, 23, 38, 20, 17, 37, 13, 9, 22, 31, 12, 2, 14, 16, 30, 5, 35, 40, 34, 33, 26, 18, 3, 21, 24, 4, 28, 32, 19, 10, 29, 39
OFFSET
0,2
COMMENTS
Sequence is periodic with length 40. Since a(20) = 40 (or -1), 41 is prime in Z[sqrt(7)]. - Alonso del Arte, Oct 11 2012
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1).
FORMULA
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n - 1) - a(n - 20) + a(n - 21).
G.f.: ( -1 -6*x -x^2 -7*x^3 -8*x^4 -15*x^5 +18*x^6 +3*x^7 -20*x^8 + 24*x^9 +4*x^10 -13*x^11 -9*x^12 +19*x^13 +10*x^14 -12*x^15 -2*x^16 - 14*x^17 +25*x^18 -30*x^19 -6*x^20 ) / ( (x - 1)*(x^4 + 1)*(x^16 -x^12 + x^8 -x^4 +1) ). (End)
a(n) = a(n-40). - G. C. Greubel, Mar 22 2016
MATHEMATICA
PowerMod[7, Range[0, 74], 41] (* Alonso del Arte, Oct 12 2012 *)
PROG
(Sage) [power_mod(7, n, 41)for n in range(0, 75)] # Zerinvary Lajos, Nov 27 2009
(PARI) a(n)=lift(Mod(7, 41)^n) \\ Charles R Greathouse IV, Mar 22 2016
(Magma) [Modexp(7, n, 41): n in [0..100]]; // Bruno Berselli, Mar 22 2016
CROSSREFS
Sequence in context: A047521 A231390 A231458 * A022097 A041100 A129658
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 12 2002
STATUS
approved