login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231458
Number of (n+1) X (2+1) 0..3 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..3 introduced in row major order.
1
7, 8, 15, 20, 32, 56, 111, 230, 501, 1108, 2494, 5646, 12867, 29400, 67363, 154548, 355012, 816044, 1876871, 4318210, 9937849, 22874740, 52659602, 121237426, 279141179, 642732036, 1479959127, 3407837396, 7847200520, 18069880640
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) + a(n-2) - 7*a(n-3) + a(n-4) + 3*a(n-5) for n>7.
Empirical g.f.: x*(7 - 13*x - 16*x^2 + 16*x^3 + 6*x^4 + 16*x^5 + 12*x^6) / ((1 - x)*(1 - x - x^2)*(1 - x - 3*x^2)). - Colin Barker, Sep 29 2018
EXAMPLE
Some solutions for n=5:
..0..0..0....0..0..0....0..0..0....0..1..0....0..0..0....0..0..0....0..0..0
..0..0..0....1..1..1....1..1..1....1..0..1....1..1..1....0..0..0....1..1..1
..1..1..1....1..1..1....1..1..1....0..1..0....1..1..1....0..0..0....1..1..1
..1..1..1....1..1..1....2..2..2....1..0..1....2..2..2....1..1..1....1..1..1
..1..1..1....1..1..1....2..2..2....0..1..0....2..2..2....1..1..1....1..1..1
..2..2..2....2..2..2....3..3..3....1..0..0....1..1..1....1..1..1....0..0..0
CROSSREFS
Column 2 of A231463.
Sequence in context: A165465 A047521 A231390 * A070424 A022097 A041100
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 09 2013
STATUS
approved