login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069970
Numbers k such that sigma(reverse(k)) = sigma(reverse(k-1)) + sigma(reverse(k-2)).
1
3, 4, 352, 525, 532, 564, 572, 782, 3783, 5242, 5762, 5784, 7852, 7884, 31732, 38817, 41736, 46194, 52942, 57842, 61146, 63075, 67266, 68853, 95418, 196313, 403194, 424292, 436642, 444382, 493592, 521812, 521853, 521856, 523682, 527067, 527452, 541132, 543442
OFFSET
1,1
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..138 (all terms < 10^8)
EXAMPLE
sigma(reverse(352)) = sigma(253) = 288 = 234 + 54 = sigma(153) + sigma(53) = sigma(reverse(352-1)) + sigma(reverse(352-2)).
MATHEMATICA
rev[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Select[Range[3, 10^5], DivisorSigma[1, rev[ # ]] == DivisorSigma[1, rev[ # - 1]] + DivisorSigma[1, rev[ # - 2]] &]
PROG
(Python)
from itertools import count, islice
from sympy import divisor_sigma as sigma
def agen(): # generator of terms
dr2, dr1 = 1, 3
for k in count(3):
dr = sigma(int(str(k)[::-1]))
if dr == dr1 + dr2:
yield k
dr2, dr1 = dr1, dr
print(list(islice(agen(), 25))) # Michael S. Branicky, May 29 2024
CROSSREFS
Sequence in context: A348280 A304150 A305505 * A305169 A316759 A334471
KEYWORD
base,nonn
AUTHOR
Joseph L. Pe, Apr 29 2002
EXTENSIONS
More terms from Sean A. Irvine, May 28 2024
STATUS
approved