The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A069790 Triangular numbers with arithmetic mean of digits = 1 (sum of digits = number of digits). 2
 1, 120, 210, 300, 112101, 100600020, 101111310, 110120220, 200130021, 200310120, 1000051003, 1010004040, 1130002030, 1411000003, 2002021003, 3200200003, 5000050000, 100110002070, 111111101310, 111202101003, 180000300000, 211104100200, 231201020001, 500001500001, 501001000500, 100021000424010 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The sum of the digits of a triangular number is 0, 1, 3 or 6 (mod 9). From Robert Israel, Aug 24 2018: (Start) Suppose A007953(x) + A007953(2*x^2) - A055642(2*x^2) is even and A007953(x) + A007953(2*x^2) >= 2*A055642(x) + A055642(2*x^2). Then 10^k*x*(1+2*10^k*x) is in the sequence, where k = (A007953(x) + A007953(2*x^2) - A055642(2*x^2))/2. In particular, x = 10^j-2 satisfies this criterion for all j>=1, with k = j. Thus the sequence is infinite. - Robert Israel, Aug 24 2018 LINKS Jon E. Schoenfield, Table of n, a(n) for n = 1..341 (all terms < 10^23) MAPLE T:= proc(n, k) option remember; if n*9 < k then return {} fi; if n = 1 then return {k} fi; `union`(seq(map(t -> 10*t+j, procname(n-1, k-j)), j=0..min(9, k))) end proc: T(1, 0):= {}: sort(convert(select(t -> issqr(8*t+1), `union`(seq(seq(T(9*i+j, 9*i+j), j=[0, 1, 3, 6]), i=0..1))), list)); # Robert Israel, Aug 24 2018 MATHEMATICA s=Select[Range[500000], Length[z=IntegerDigits[ #(#+1)/2]]==Plus@@z&]; s(s+1)/2 Select[Accumulate[Range[500000]], Mean[IntegerDigits[#]]==1&] (* Harvey P. Dale, May 05 2011 *) CROSSREFS Cf. A007953, A055642. Sequence in context: A056994 A288461 A114823 * A064224 A069674 A003015 Adjacent sequences: A069787 A069788 A069789 * A069791 A069792 A069793 KEYWORD base,nonn AUTHOR Amarnath Murthy, Apr 08 2002 EXTENSIONS Edited by Dean Hickerson and Robert G. Wilson v, Apr 10 2002 More terms from Robert Israel, Aug 24 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 21:40 EST 2024. Contains 370288 sequences. (Running on oeis4.)