Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jul 28 2019 19:32:20
%S 1,120,210,300,112101,100600020,101111310,110120220,200130021,
%T 200310120,1000051003,1010004040,1130002030,1411000003,2002021003,
%U 3200200003,5000050000,100110002070,111111101310,111202101003,180000300000,211104100200,231201020001,500001500001,501001000500,100021000424010
%N Triangular numbers with arithmetic mean of digits = 1 (sum of digits = number of digits).
%C The sum of the digits of a triangular number is 0, 1, 3 or 6 (mod 9).
%C From _Robert Israel_, Aug 24 2018: (Start)
%C Suppose A007953(x) + A007953(2*x^2) - A055642(2*x^2) is even and
%C A007953(x) + A007953(2*x^2) >= 2*A055642(x) + A055642(2*x^2).
%C Then 10^k*x*(1+2*10^k*x) is in the sequence, where k = (A007953(x) + A007953(2*x^2) - A055642(2*x^2))/2.
%C In particular, x = 10^j-2 satisfies this criterion for all j>=1, with k = j. Thus the sequence is infinite. - _Robert Israel_, Aug 24 2018
%H Jon E. Schoenfield, <a href="/A069790/b069790.txt">Table of n, a(n) for n = 1..341</a> (all terms < 10^23)
%p T:= proc(n,k) option remember;
%p if n*9 < k then return {} fi;
%p if n = 1 then return {k} fi;
%p `union`(seq(map(t -> 10*t+j, procname(n-1,k-j)),j=0..min(9,k)))
%p end proc:
%p T(1,0):= {}:
%p sort(convert(select(t -> issqr(8*t+1), `union`(seq(seq(T(9*i+j,9*i+j),j=[0,1,3,6]),i=0..1))),list)); # _Robert Israel_, Aug 24 2018
%t s=Select[Range[500000], Length[z=IntegerDigits[ #(#+1)/2]]==Plus@@z&]; s(s+1)/2
%t Select[Accumulate[Range[500000]],Mean[IntegerDigits[#]]==1&] (* _Harvey P. Dale_, May 05 2011 *)
%Y Cf. A007953, A055642.
%K base,nonn
%O 1,2
%A _Amarnath Murthy_, Apr 08 2002
%E Edited by _Dean Hickerson_ and _Robert G. Wilson v_, Apr 10 2002
%E More terms from _Robert Israel_, Aug 24 2018