

A069261


Denominators of the Egyptian fraction for the fractional part of Feigenbaum's constant, 4.6692...


25



2, 6, 395, 303319, 131209492876, 45596605913248081159007, 34243827483200809826686815883136413405197711755, 111445370519459209554489628949586784217535791333333948765270067675689059510906528783799426730444
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The next term in the series, a(9), is ~ 10^190.
The sequence gives the denominators for the fractional part of delta only. One could prefix four 1's in order to get (sum of reciprocals) = delta.


LINKS

Table of n, a(n) for n=1..8.


FORMULA

a(n) = ceiling(1/(delta  4  Sum_{0 < i < n} 1/a(i))) is the smallest integer such that 4 + Sum_{i=1..n} 1/a(i) < delta = 4.6620...  M. F. Hasler, Apr 30 2018


PROG

(PARI) t=delta4/*from A006890, or use: t=contfracpnqn(A069544); t[1, 1]/t[2, 1]*/; for(i=1, 8, print1(1\t+1", "); t=1/(1\t+1)) \\ Requires delta to 93 decimals or A069544 to 90 terms (up to [..., 1, 1, 4]) to get a(7) correctly, 180 terms for a(8).  M. F. Hasler, Apr 30 2018


CROSSREFS

Cf. A006890 (Feigenbaum's constant), A069544 (continued fraction).
Sequence in context: A321571 A092024 A252741 * A053608 A199239 A123261
Adjacent sequences: A069258 A069259 A069260 * A069262 A069263 A069264


KEYWORD

frac,nonn


AUTHOR

Christopher Lund (clund(AT)san.rr.com), Apr 14 2002


EXTENSIONS

Edited by M. F. Hasler, Apr 30 2018


STATUS

approved



