login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069231
Numbers n such that there are exactly 3 primes p satisfying the inequality n < p < n + tau(n)^2 where tau(n) = A000005(n).
4
4, 9, 21, 51, 55, 62, 74, 77, 82, 86, 87, 91, 106, 122, 123, 129, 134, 142, 143, 145, 146, 155, 158, 159, 161, 177, 183, 214, 215, 217, 237, 249, 254, 259, 265, 274, 278, 298, 299, 301, 309, 334, 335, 339, 341, 343, 358, 365, 371, 377, 382, 386, 394, 395, 407
OFFSET
1,1
LINKS
MAPLE
filter:= n -> nops(select(isprime, [$(n+1) .. (n+numtheory:-tau(n)^2-1)]))=3:
select(filter, [$1..1000]); # Robert Israel, Jan 05 2018
MATHEMATICA
fQ[n_] := Block[{r = Range[n, n + DivisorSigma[0, n]^2]}, If[ PrimeQ@ n, r = Rest@ r]; If[ PrimeQ[ r[[-1]]], r = Most@ r]; Length@ Select[r, PrimeQ] == 3]; Select[Range@410, fQ] (* Robert G. Wilson v, Jan 05 2018 *)
PROG
(PARI) isok(n) = #select(x->isprime(x), vector(numdiv(n)^2-1, k, k+n)) == 3; \\ Michel Marcus, Jun 18 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Apr 13 2002
STATUS
approved