login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that there are exactly 3 primes p satisfying the inequality n < p < n + tau(n)^2 where tau(n) = A000005(n).
4

%I #24 Jan 05 2018 22:02:42

%S 4,9,21,51,55,62,74,77,82,86,87,91,106,122,123,129,134,142,143,145,

%T 146,155,158,159,161,177,183,214,215,217,237,249,254,259,265,274,278,

%U 298,299,301,309,334,335,339,341,343,358,365,371,377,382,386,394,395,407

%N Numbers n such that there are exactly 3 primes p satisfying the inequality n < p < n + tau(n)^2 where tau(n) = A000005(n).

%H Robert Israel, <a href="/A069231/b069231.txt">Table of n, a(n) for n = 1..10000</a>

%p filter:= n -> nops(select(isprime, [$(n+1) .. (n+numtheory:-tau(n)^2-1)]))=3:

%p select(filter, [$1..1000]); # _Robert Israel_, Jan 05 2018

%t fQ[n_] := Block[{r = Range[n, n + DivisorSigma[0, n]^2]}, If[ PrimeQ@ n, r = Rest@ r]; If[ PrimeQ[ r[[-1]]], r = Most@ r]; Length@ Select[r, PrimeQ] == 3]; Select[Range@410, fQ] (* _Robert G. Wilson v_, Jan 05 2018 *)

%o (PARI) isok(n) = #select(x->isprime(x), vector(numdiv(n)^2-1, k, k+n)) == 3; \\ _Michel Marcus_, Jun 18 2017

%Y Cf. A000005, A049591, A069230, A069232, A069233.

%K easy,nonn

%O 1,1

%A _Benoit Cloitre_, Apr 13 2002