|
|
A068992
|
|
Composite numbers k such that Sum_{d|k} sigma(d)/tau(d) is an integer.
|
|
1
|
|
|
10, 15, 21, 26, 30, 33, 34, 35, 39, 49, 51, 55, 57, 58, 60, 65, 69, 70, 74, 75, 77, 78, 82, 85, 87, 91, 93, 95, 98, 102, 105, 106, 110, 111, 115, 119, 120, 122, 123, 129, 130, 133, 141, 143, 145, 146, 147, 155, 156, 159, 161, 165, 169, 170, 174, 177, 178, 182, 183
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For p prime, contains p^2 if and only if p == 1 (mod 6). - Robert Israel, May 14 2019
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
|
|
MAPLE
|
N:= 1000:
V:= Vector(N):
for d from 1 to N do
r:= numtheory:-sigma(d)/numtheory:-tau(d);
C:= [seq(i, i=d..N, d)];
V[C]:= V[C] +~ r
od:
select(t -> not(isprime(t)) and V[t]::integer, [$2..N]); # Robert Israel, May 14 2019
|
|
MATHEMATICA
|
q[n_] := CompositeQ[n] && IntegerQ @ DivisorSum[n, Divide @@ DivisorSigma[{1, 0}, #] &]; Select[Range[200], q] (* Amiram Eldar, Jun 08 2022 *)
|
|
CROSSREFS
|
Contains A024556.
Cf. A000005, A000203.
Sequence in context: A108614 A336548 A115708 * A325901 A098564 A168103
Adjacent sequences: A068989 A068990 A068991 * A068993 A068994 A068995
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Benoit Cloitre, Apr 06 2002
|
|
STATUS
|
approved
|
|
|
|