login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068989
Squares which when reversed are primes (ignore leading zeros).
3
16, 196, 361, 784, 1024, 1369, 1444, 1600, 1681, 3844, 7225, 7921, 9025, 9409, 11236, 14161, 18496, 19321, 19600, 36100, 37249, 38416, 70756, 73441, 75076, 76729, 78400, 78961, 97969, 99856, 102400, 105625, 107584, 109561, 111556, 112225
OFFSET
1,1
EXAMPLE
40^2 = 1600. Reversing the digits we get 0061, which is the prime 61 padded with leading zeroes. Hence 1600 is in the sequence.
41^2 = 1681. Reversing the digits we get 1861, which is a prime. Hence 1681 is in the sequence.
42^2 = 1764. Reversing the digits we get 4671 = 3^3 * 173. So 1764 is not in the sequence.
MATHEMATICA
Do[s = i^2; If[PrimeQ[FromDigits[Reverse[IntegerDigits[s]]]], Print[s]], {i, 1, 10^2}] (* Pe *)
Select[Range[100]^2, PrimeQ[FromDigits[Reverse[IntegerDigits[#]]]] &] (* Alonso del Arte, Jan 07 2018 *)
PROG
(PARI) isok(n) = issquare(n) && isprime(fromdigits(Vecrev(digits(n)))); \\ Michel Marcus, Jan 07 2018
CROSSREFS
Cf. primes whose reversal is a square, A007488; numbers n such that n^2 reversed is a prime, A059007.
Sequence in context: A016280 A281946 A077363 * A017318 A173668 A373108
KEYWORD
easy,nonn,base
AUTHOR
Joseph L. Pe, Mar 12 2002
EXTENSIONS
More terms from Zak Seidov, Jan 26 2005
Edited by N. J. A. Sloane, Dec 23 2007
STATUS
approved