The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A068452 Pi^2 = Sum_{n>=1} a(n)/n!. 2
 9, 1, 2, 0, 4, 2, 0, 6, 4, 0, 4, 11, 6, 4, 14, 8, 12, 6, 18, 12, 12, 14, 13, 2, 7, 20, 12, 2, 16, 21, 25, 26, 29, 19, 7, 3, 20, 3, 38, 7, 12, 19, 37, 1, 23, 32, 19, 32, 38, 45, 45, 27, 44, 34, 14, 49, 35, 29, 30, 57, 57, 18, 56, 48, 33, 19, 44, 35, 12, 56, 28, 38, 64, 35, 10, 45, 35, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For the fractional part, this corresponds to the factoradic (or factorial base, or harmonic) expansion, but the integer part 9 = 3! + 2! + 1! would be [1, 1, 1] in factorial base, cf. A007623(9) = 111. - M. F. Hasler, Nov 27 2018 LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Vincenzo Librandi) Eric Weisstein's World of Mathematics, Harmonic Expansion. Wikipedia, Factorial number system: Fractional values MAPLE fexp := proc(x) local xres, a, n ; xres := x ; a := [] ; for n from 1 to 100 do a := [op(a), floor(n!*xres)] ; xres := xres-op(-1, a)/n! ; od: a ; end: Digits := 400 ; fexp(evalf(Pi^2)) ; Digits := 600 ; fexp(evalf(Pi^2)) ; # R. J. Mathar, Sep 30 2008 MATHEMATICA p=N[Pi, 10000]^2; Do[k=Floor[p n!]; p=p - k / n!; Print[k], {n, 1000}] (* Vincenzo Librandi, Nov 24 2018 *) With[{b = Pi^2}, Table[If[n == 1, Floor[b], Floor[n!*b] -n*Floor[(n- 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *) PROG (PARI) default(realprecision, 250); b = Pi^2; for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 26 2018 (PARI) A068452(N=90, c=precision(Pi^2, logint(N!, 10)))=vector(N, n, if(n>1, c=c%1*n, c)\1) \\ M. F. Hasler, Nov 27 2018 (MAGMA) SetDefaultRealField(RealField(250)); R:=RealField(); [Floor(Pi(R)^2)] cat [Floor(Factorial(n)*Pi(R)^2) - n*Floor(Factorial((n-1))*Pi(R)^2) : n in [2..80]]; // G. C. Greubel, Nov 26 2018 (Sage) def A068452(n):     if (n==1): return floor(pi^2)     else: return expand(floor(factorial(n)*pi^2) - n*floor(factorial(n-1)*pi^2)) [A068452(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018 CROSSREFS Cf. A002388 (decimal expansion of Pi^2). Similar expansions: A068450 (sqrt(Pi)), A075874 (Pi), A007514 (different variant for Pi). Sequence in context: A173005 A015123 A176647 * A021527 A257437 A339757 Adjacent sequences:  A068449 A068450 A068451 * A068453 A068454 A068455 KEYWORD nonn AUTHOR Benoit Cloitre, Mar 10 2002 EXTENSIONS Corrected beginning at 3rd term by R. J. Mathar, Sep 30 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 07:59 EDT 2021. Contains 343084 sequences. (Running on oeis4.)