login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068145
Primes of the form a^a + b^b where a and b are positive integers.
12
2, 5, 31, 257, 283, 823547, 823799, 10000823543, 11112006825558043, 437893890380859631, 39346408075296538398967, 20880467999847912043271133358823, 88817841970012523233890533447265881
OFFSET
1,1
COMMENTS
The sum of the reciprocals of this sequence converges to 0.73968511225249255023367393935203659031815678811682494308673702866... The PARI program below for powerpp(60) and powerpp(70) give this result for 100 digits. Is this number irrational? Transcendental? - Cino Hilliard, Dec 14 2002
Note that 3 is also a prime of the form a^a + b^b where a = 2 and b = -1. But this sequence focuses on the positive values of a and b. - Altug Alkan, Jan 08 2016
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..94
EXAMPLE
257 = 4^4 + 1^1 is a prime. 823799 = 4^4 + 7^7 is a prime.
MAPLE
k := 1; for i from 2 to 100 do for j from 1 to i-1 do a := i^i+j^j; if(isprime(a)=true) then feld[k] := a; k := k+1; end if; end do; end do; sort([seq(feld[p], p=1..k-1)]);
MATHEMATICA
nn=100; Select[ Union[ Flatten[ Table[a^a + b^b, {a, nn}, {b, a} ]]], #<nn^nn && PrimeQ[#]& ]
With[{nn=30}, Select[Union[Total/@Tuples[Range[nn]^Range[nn], 2]], PrimeQ]] (* Harvey P. Dale, Apr 09 2015 *)
PROG
(PARI) powerpp(n) = { ct=0; sr=0; a=vector(n*n*n); for(x=1, n, for(y=x, n, v = x^x+y^y; if(isprime(v), ct+=1; a[ct] = v; \ print(x" "y" "z" "v" "ct); ); ); ); for(j=1, ct, for(k=j+1, ct, if(a[j] > a[k], tmp=a[k]; a[k]=a[j]; a[j]=tmp); ); ); for(j=1, ct, if(a[j]<>a[j+1], sr+=1.0/a[j]; print1(a[j]" ")); ); print(); print(sr); }
(PARI) v=[2]; for(a=2, 380, forstep(b=a%2+1, a-1, 2, if(ispseudoprime(t=a^a+b^b), v=concat(v, t); print(a"^"a" + "b"^"b)))); v \\ Charles R Greathouse IV, Feb 14 2011
CROSSREFS
Sequence in context: A189559 A077483 A119242 * A032112 A058009 A056187
KEYWORD
nonn,nice
AUTHOR
Amarnath Murthy, Feb 23 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v and Sascha Kurz, Mar 01 2002
Name clarified by Altug Alkan, Jan 08 2016
STATUS
approved