login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068100
a(1) = 1; a(n+1) = n!*Sum_{k|n} a(k)/k!.
0
1, 1, 3, 9, 45, 165, 1605, 6645, 82245, 626565, 7430565, 47347365, 1294747365, 7521768165, 166051339365, 2617940779365, 45296384587365, 400983812683365, 16124008954507365, 137769109363339365, 6031874478387211365, 98938319915632651365, 1994173630452264715365, 27846190369337241355365, 1807180003160859492619365
OFFSET
1,3
FORMULA
E.g.f.: Sum_{n>=1} a(n) * x^n / (n!*(1 - x^n)) = Sum_{n>=1} a(n+1) * x^n / n!. - Paul D. Hanna, Sep 04 2014
E.g.f. A(x) satisfies: d/dx A(x) = 1 + A(x) + A(x^2) + A(x^3) + ... - Ilya Gutkovskiy, May 10 2019
EXAMPLE
E.g.f.: A(x) = x/(1-x) + x^2/(2!*(1-x^2)) + 3*x^3/(3!*(1-x^3)) + 9*x^4/(4!*(1-x^4)) + 45*x^5/(5!*(1-x^5)) + 165*x^6/(6!*(1-x^6)) + ... + a(n)*x^n/(n!*(1-x^n)) + ...
such that A(x) = x + 3*x^2/2! + 9*x^3/3! + 45*x^4/4! + 165*x^5/5! + 1605*x^6/6! + ... + a(n+1)*x^n/n! + ...
MATHEMATICA
a[1] = 1; a[n_] := a[n] = (n-1)!*Sum[a[k]/k!, {k, Divisors[n-1]}]; Table[a[n], {n, 1, 25}] (* Vaclav Kotesovec, Apr 26 2020 *)
PROG
(PARI) {a(n)=if(n==1, 1, (n-1)!*sumdiv(n-1, d, a(d)/d!))}
for(n=1, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 04 2014
(PARI) /* From e.g.f.: */
{a(n)=my(A=x); if(n==1, 1, for(i=1, n, A = sum(k=1, n-1, a(k)*x^k/(k!*(1-x^k +x*O(x^n) )))); (n-1)!*polcoeff(A, n-1))}
for(n=1, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 04 2014
(PARI) N=33; v=vector(N); v[1]=1; for(n=1, N-1, v[n+1]=n!*sumdiv(n, k, v[k]/k!)); v \\ Joerg Arndt, Sep 04 2014
CROSSREFS
Sequence in context: A352797 A192891 A364296 * A327648 A262129 A012821
KEYWORD
nonn
AUTHOR
Leroy Quet, Mar 22 2002
STATUS
approved