Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Apr 26 2020 06:08:36
%S 1,1,3,9,45,165,1605,6645,82245,626565,7430565,47347365,1294747365,
%T 7521768165,166051339365,2617940779365,45296384587365,400983812683365,
%U 16124008954507365,137769109363339365,6031874478387211365,98938319915632651365,1994173630452264715365,27846190369337241355365,1807180003160859492619365
%N a(1) = 1; a(n+1) = n!*Sum_{k|n} a(k)/k!.
%F E.g.f.: Sum_{n>=1} a(n) * x^n / (n!*(1 - x^n)) = Sum_{n>=1} a(n+1) * x^n / n!. - _Paul D. Hanna_, Sep 04 2014
%F E.g.f. A(x) satisfies: d/dx A(x) = 1 + A(x) + A(x^2) + A(x^3) + ... - _Ilya Gutkovskiy_, May 10 2019
%e E.g.f.: A(x) = x/(1-x) + x^2/(2!*(1-x^2)) + 3*x^3/(3!*(1-x^3)) + 9*x^4/(4!*(1-x^4)) + 45*x^5/(5!*(1-x^5)) + 165*x^6/(6!*(1-x^6)) + ... + a(n)*x^n/(n!*(1-x^n)) + ...
%e such that A(x) = x + 3*x^2/2! + 9*x^3/3! + 45*x^4/4! + 165*x^5/5! + 1605*x^6/6! + ... + a(n+1)*x^n/n! + ...
%t a[1] = 1; a[n_] := a[n] = (n-1)!*Sum[a[k]/k!, {k, Divisors[n-1]}]; Table[a[n], {n, 1, 25}] (* _Vaclav Kotesovec_, Apr 26 2020 *)
%o (PARI) {a(n)=if(n==1,1,(n-1)!*sumdiv(n-1,d,a(d)/d!))}
%o for(n=1,25,print1(a(n),", ")) \\ _Paul D. Hanna_, Sep 04 2014
%o (PARI) /* From e.g.f.: */
%o {a(n)=my(A=x);if(n==1,1,for(i=1,n, A = sum(k=1,n-1,a(k)*x^k/(k!*(1-x^k +x*O(x^n) )))); (n-1)!*polcoeff(A,n-1))}
%o for(n=1,25,print1(a(n),", ")) \\ _Paul D. Hanna_, Sep 04 2014
%o (PARI) N=33; v=vector(N); v[1]=1; for(n=1,N-1,v[n+1]=n!*sumdiv(n,k,v[k]/k!)); v \\ _Joerg Arndt_, Sep 04 2014
%K nonn
%O 1,3
%A _Leroy Quet_, Mar 22 2002