login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067653
Denominators of the coefficients in exp(x/(1-x)) power series.
7
1, 1, 2, 6, 24, 40, 720, 5040, 4480, 362880, 3628800, 13305600, 479001600, 6227020800, 29059430400, 1307674368000, 1609445376000, 13173608448000, 6402373705728000, 121645100408832000, 810967336058880000, 4644631106519040000, 86461594444431360000
OFFSET
0,3
COMMENTS
Define c(n)=A067764(n)/A067653(n). For a given sequence s(n) consider P[s(n)](z):=e^(-z/(1-z))*Sum_{k>=0} s(k)c(k)z^k. Regarding complex valued abelian limitation the following holds true: if s(n) is convergent (to the limit s) then lim P[s(n)](z)=s as z tends to +1 in a certain subdomain D of the unit circle. There are two constraints: (1) D contains the line [0,1[. (2) There is a d>0 such that the intersection of {w|Re(w)>1-d} and D is a nonempty subset of a generalized Stolz set defined by {w||Im(w)|<=t*(1-Re(w))^(3/2)}, t<1. If z tends to +1 from outside such a domain that limit doesn't exist in general. - Hieronymus Fischer, Oct 20 2010
There is a significant overlap between the terms of this sequence and the terms of factorials (A000142): 44 of the first 100 terms of this sequence are also factorials. - Harvey P. Dale, Oct 27 2011
If there is no cancellation in the defining sum, a(n) = n!. In particular, a(p) = p! for prime p. In any case a(n) | n!. - Charles R Greathouse IV, Oct 27 2011
REFERENCES
H. Fischer, Eine Theorie komplexwertiger Abelscher Limitierungsmethoden (A theory of complex valued abelian limitation methods), Dissertation (1987), pp. 29-32.
K. Knopp, Theory and application of infinite series, Dover, p. 547.
O. Perron, Über das infinitäre Verhalten der Koeffizienten einer gewissen Potenzreihe, Archiv d. Math. u. Phys. (3), Vol. 22, pp. 329-340, 1914.
K. Zeller, W. Beekmann, Theorie der Limitierungsverfahren, Springer-Verlag, Berlin (1970).
LINKS
D. Borwein, On methods of summability based on power series, Proc. Royal Soc. Edinburgh, Sect. A Volume 64 / Issue 04 / January 1957, pp 342-349.
Richard P. Brent, M. L. Glasser, and Anthony J. Guttmann, A Conjectured Integer Sequence Arising From the Exponential Integral, arXiv:1812.00316 [math.NT], 2018.
FORMULA
a(n) is the denominator of Sum_{i=1..n} binomial(n-1, i-1)/i!.
EXAMPLE
exp(x/(1-x)) = 1 + x + (3/2)*x^2 + (13/6)*x^3 + (73/24)*x^4 + (167/40)*x^5 + (4051/720)*x^6 + (37633/5040)*x^7 + (43817/4480)*x^8 + (4596553/362880)*x^9 + ... .
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add((n-k)*b(k), k=0..n-1)/n)
end:
a:= n-> denom(b(n)):
seq(a(n), n=0..25); # Alois P. Heinz, May 12 2016
MATHEMATICA
Denominator[Rest[CoefficientList[Series[Exp[x/(1-x)], {x, 0, 20}], x]]] (* Harvey P. Dale, Oct 26 2011 *)
r[n_] := If[n == 0, 1, Hypergeometric1F1[1 - n, 2, -1]]; Table[Denominator@ r[n], {n, 0, 22}] (* Peter Luschny, Feb 02 2019 *)
PROG
(PARI) apply(x->denominator(x), Vec(exp(x/(1-x)))) \\ Charles R Greathouse IV, Oct 27 2011
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(1-x)))); [Denominators(b[n]): n in [1..m]]; // G. C. Greubel, Dec 04 2018
(SageMath) [denominator(sum(binomial(n-1, j-1)/factorial(j) for j in (1..n))) for n in range(30)] # G. C. Greubel, Dec 04 2018
CROSSREFS
Cf. A067764.
Sequence in context: A257546 A274038 A143383 * A090755 A192196 A000496
KEYWORD
nonn,frac
AUTHOR
Benoit Cloitre, Feb 03 2002
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, May 12 2016
STATUS
approved