

A067458


Sum of remainders when n is divided by its nonzero digits.


4



0, 0, 0, 1, 2, 0, 4, 3, 2, 1, 0, 1, 0, 3, 0, 1, 2, 7, 4, 3, 0, 1, 2, 0, 3, 2, 0, 3, 8, 3, 0, 1, 2, 4, 0, 1, 6, 8, 0, 5, 0, 1, 2, 5, 6, 0, 3, 3, 5, 9, 0, 1, 2, 3, 4, 5, 0, 5, 6, 9, 0, 1, 2, 4, 6, 5, 10, 0, 7, 9, 0, 1, 2, 5, 4, 5, 8, 10, 0, 9, 0, 1, 2, 3, 6, 5, 6, 13, 10, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

10,5


COMMENTS

a(n) = 0 for 0 < n 10.
a(A002796(n)) = 0; a(A171492(n)) > 0.  Reinhard Zumkeller, Sep 24 2015


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 10..10000


EXAMPLE

a(14)= 2 as 1 divides 14 and 2 is the remainder obtained when 14 is divided by 4.


MATHEMATICA

Table[Plus @@ Mod[n, Select[IntegerDigits[n], # != 0 &]], {n, 10, 100}]


PROG

(Haskell)
a067458 n = f 0 n where
f y 0 = y
f y x = if d == 0 then f y x' else f (y + mod n d) x'
where (x', d) = divMod x 10
 Reinhard Zumkeller, Sep 24 2015


CROSSREFS

Cf. A002796, A171492.
Sequence in context: A192423 A265584 A078909 * A088330 A324471 A122512
Adjacent sequences: A067455 A067456 A067457 * A067459 A067460 A067461


KEYWORD

base,easy,nonn


AUTHOR

Amarnath Murthy, Feb 07 2002


EXTENSIONS

Edited and extended by Robert G. Wilson v, Feb 11 2002


STATUS

approved



