The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066860 The sum of the non-divisors of n (less than n) is a multiple of the sum of the divisors of n. 3
 15, 20, 24, 95, 104, 207, 224, 287, 464, 1023, 1199, 1952, 4095, 4607, 8036, 12095, 15872, 16895, 19359, 22932, 23519, 28799, 45440, 45695, 54144, 77375, 101567, 102024, 130304, 159599, 163295, 223199, 296207, 317184, 352799, 522752, 524160 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Donovan Johnson, Table of n, a(n) for n = 1..300 FORMULA a(n) = A076617(n+2) - Alex Ratushnyak, Jul 02 2013. A232324(a(n)) = A024816(a(n)) mod A000203(a(n)) = 0. -Jaroslav Krizek, Nov 25 2013 EXAMPLE Divisors of 15 = {1, 3, 5, 15}, which sum to 24. Non-divisors of 15 less than 15 = {2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14}, which sum to 96, a multiple of 24. So 15 is a term of the sequence. MAPLE with(numtheory); P:=proc(i) local a, n; for n from 3 to i do   a:=(n*(n+1))/(2*sigma(n))-1; if a=trunc(a) then print(n); fi; od; end: P(10000000000); # Paolo P. Lava, Dec 12 2011 MATHEMATICA f[n_] := Module[{a, b, c}, a = Divisors[n]; b = Apply[Plus, Complement[Range[1, n], a]]; c = Apply[Plus, a]; Mod[b, c] == 0]; Do[If[f[n] == True, Print[n]], {n, 3, 23519}] Select[Range[3, 10000], Mod[# (# + 1)/2, DivisorSigma[1, #]] == 0 &] (* T. D. Noe, Nov 27 2013 *) CROSSREFS Cf. A000203, A024816, A076617, A232324. Sequence in context: A014603 A070222 A143321 * A120159 A163602 A074236 Adjacent sequences:  A066857 A066858 A066859 * A066861 A066862 A066863 KEYWORD nonn AUTHOR Joseph L. Pe, Jan 25 2002 EXTENSIONS More terms from Lior Manor Feb 10 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 18:59 EDT 2020. Contains 334832 sequences. (Running on oeis4.)