login
A066860
The sum of the non-divisors of n (less than n) is a multiple of the sum of the divisors of n.
3
15, 20, 24, 95, 104, 207, 224, 287, 464, 1023, 1199, 1952, 4095, 4607, 8036, 12095, 15872, 16895, 19359, 22932, 23519, 28799, 45440, 45695, 54144, 77375, 101567, 102024, 130304, 159599, 163295, 223199, 296207, 317184, 352799, 522752, 524160
OFFSET
1,1
LINKS
FORMULA
a(n) = A076617(n+2) - Alex Ratushnyak, Jul 02 2013.
A232324(a(n)) = A024816(a(n)) mod A000203(a(n)) = 0. -Jaroslav Krizek, Nov 25 2013
EXAMPLE
Divisors of 15 = {1, 3, 5, 15}, which sum to 24. Non-divisors of 15 less than 15 = {2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14}, which sum to 96, a multiple of 24. So 15 is a term of the sequence.
MATHEMATICA
f[n_] := Module[{a, b, c}, a = Divisors[n]; b = Apply[Plus, Complement[Range[1, n], a]]; c = Apply[Plus, a]; Mod[b, c] == 0]; Do[If[f[n] == True, Print[n]], {n, 3, 23519}]
Select[Range[3, 10000], Mod[# (# + 1)/2, DivisorSigma[1, #]] == 0 &] (* T. D. Noe, Nov 27 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Jan 25 2002
EXTENSIONS
More terms from Lior Manor Feb 10 2002
STATUS
approved