login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066862 Numbers n such that n divides sum(i=1,n,gcd(n,i)) = A018804(n). 3
1, 4, 15, 16, 27, 48, 60, 64, 108, 144, 240, 256, 325, 432, 729, 891, 960, 1008, 1024, 1200, 1280, 1296, 1300, 1728, 1875, 2916, 3072, 3125, 3564, 3645, 3840, 3888, 4095, 4096, 5200, 6000, 6237, 6375, 6400, 6912, 7056, 7500, 8775, 9216, 11520, 11664, 12500 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Also n such that sum(d|n,phi(d)/d) is an integer. - Benoit Cloitre, Apr 14 2002

If two coprime numbers are terms then their product is as well, because Pillai's function A018804(n) is multiplicative. - Thomas Ordowski, Oct 28 2014

The first six squarefree terms are 1, 15=3*5, 1488251=19*29*37*73, 4464753=3*19*29*37*73, 7441255=5*19*29*37*73 and 22323765=3*5*19*29*37*73. Are there any others? - Michel Marcus and Thomas Ordowski, Nov 01 2014

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..3287

L. Toth, A survey of gcd-sum functions, J. Int. Seq. 13 (2010) # 10.8.1

FORMULA

If n = 4^k with k >= 0, n is in the sequence.

If p is prime and k >= 0 then n = p^(kp) is in the sequence. - Thomas Ordowski, Oct 28 2014

MAPLE

A066862:=n->`if`(add(gcd(n, i), i=1..n) mod n = 0, n, NULL):

seq(A066862(n), n=1..500); # Wesley Ivan Hurt, Oct 28 2014

MATHEMATICA

a066862[n_Integer] := Select[Range[n], Divisible[Sum[GCD[#, i], {i, 1, #}], #] &]; a066862[12500] (* Michael De Vlieger, Nov 23 2014 *)

PROG

(PARI) isok(n) = sum(i=1, n, gcd(n, i)) % n == 0; \\ Michel Marcus, Nov 20 2013

(PARI) A018804(n)=my(f=factor(n)); prod(i=1, #f~, (f[i, 2]*(f[i, 1]-1)/f[i, 1] + 1)*f[i, 1]^f[i, 2])

is(n)=A018804(n)%n==0 \\ Charles R Greathouse IV, Oct 28 2014

CROSSREFS

Sequence in context: A161769 A135658 A228589 * A228590 A103540 A065159

Adjacent sequences:  A066859 A066860 A066861 * A066863 A066864 A066865

KEYWORD

nonn

AUTHOR

Benoit Cloitre, Jan 25 2002

EXTENSIONS

More terms from Michel Marcus, Nov 20 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 03:22 EDT 2020. Contains 333155 sequences. (Running on oeis4.)