login
A066831
Numbers k such that sigma(k) divides sigma(phi(k)).
7
1, 13, 71, 87, 89, 181, 203, 305, 319, 362, 667, 899, 1257, 1363, 1421, 1525, 1711, 1798, 1889, 2407, 2501, 2933, 3103, 4609, 4615, 4687, 4843, 5002, 5191, 6583, 7123, 7625, 7627, 9374, 9947, 10063, 10411, 10991, 11107, 12989, 13543, 13891, 14587
OFFSET
1,2
COMMENTS
For odd n, if sigma(phi(n))/sigma(n)=3 then sigma(phi(2*n))/sigma(2*n)=1. - Vladeta Jovovic, Jan 21 2002.
Comments from Vim Wenders, Nov 01 2006: (Start)
This is almost certainly false for even n. For odd n we have phi(n)=phi(2n) and with sigma(2)=3 trivially sigma(phi(n))/sigma(n)=3 <=> sigma(phi(2n))/sigma(2n) = sigma(phi(n))/3.sigma(n)=1.
But suppose n=2m, m odd: again with phi(2m)=phi(m) and sigma(2)=3, sigma(phi(2m)) / sigma(2m)=3 => sigma(phi( m)) /3sigma( m)=3 => sigma(phi( m)) / sigma( m)=9; and with sigma(4)=7 sigma( phi(4m))/ sigma(4m)=1 => sigma(2phi( m))/7sigma( m)=1 => sigma(2phi( m))/ sigma( m)=7. So we get the condition sigma(phi( m)) / sigma( m)=9 <=> sigma(2phi( m))/ sigma( m)=7 which will fail. So if there is a (very) big odd number n in A066831 (numbers n such that sigma(n) divides sigma(phi(n))) with A066831(n) = 9, the conjecture is wrong. I admit I could not yet find such a number, nor do i really know it exists, i.e., A067385(9) exists. (End)
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, B42.
LINKS
MATHEMATICA
For[ n=1, True, n++, If[ Mod[ DivisorSigma[ 1, EulerPhi[ n ] ], DivisorSigma[ 1, n ] ]==0, Print[ n ] ] ]
Select[Range[15000], Divisible[DivisorSigma[1, EulerPhi[#]], DivisorSigma[1, #]]&] (* Harvey P. Dale, Oct 19 2011 *)
PROG
(PARI) isok(k) = { sigma(eulerphi(k)) % sigma(k) == 0 } \\ Harry J. Smith, Mar 30 2010
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 19 2002
EXTENSIONS
More terms from Vladeta Jovovic and Robert G. Wilson v, Jan 20 2002
Edited by Dean Hickerson, Jan 20 2002
STATUS
approved