



1, 1, 2, 1, 4, 1, 4, 4, 3, 2, 8, 3, 7, 7, 9, 2, 8, 5, 10, 10, 8, 6, 19, 6, 12, 9, 9, 8, 22, 9, 12, 12, 15, 10, 31, 9, 11, 14, 24, 13, 23, 9, 24, 17, 16, 10, 35, 15, 23, 25, 20, 12, 40, 17, 34, 21, 18, 14, 37, 17, 24, 25, 41, 20, 39, 14, 31, 34, 33, 18, 42, 16, 32, 37, 41, 18, 44, 25
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,3


COMMENTS

antiphi(n) = the number of integers < n that are not divisible by any antidivisor of n.
The old definition given for this sequence was: antiphi(n) = number of integers <= n that are coprime to the antidivisors of n. However this does not match the entries.
See A066272 for definition of antidivisor.


LINKS

Nathaniel Johnston, Table of n, a(n) for n = 2..10000 [This replaces an earlier bfile computed by Diana Mecum]
Jon Perry, Antiphi function [Broken link]
Jon Perry, The Antidivisor [Cached copy]
Jon Perry, The Antidivisor: Even More AntiDivisors [Cached copy]


EXAMPLE

10 has antidivisors 3,4,7. The numbers not divisible by any of 3,4,7 and less than 10 are 1,2,5. Therefore antiphi(10)=3.


MAPLE

# needs antidivisors() as implemented in A066272
A066452 := proc(n)local ad, isad, j, k, totad:ad:=antidivisors(n):totad:=0:for j from 1 to n1 do isad:=1:for k from 1 to nops(ad) do if(j mod ad[k]=0)then isad:=0:break: fi:od:totad:=totad+isad:od:return totad:end:
seq(A066452(n), n=2..50); # Nathaniel Johnston, Apr 20 2011


PROG

(Python)
def A066452(n):
....return len([x for x in xrange(1, n) if all([x % d for d in xrange(2, n) if (n % d) and (2*n) % d in [d1, 0, 1]])]) # Chai Wah Wu, Aug 07 2014
(PARI) antidiv(n) = {my(v = []); for (k=2, n1, if (abs((n % k)  k/2) < 1, v = concat(v, k)); ); v; }
a(n) = {my(vad = antidiv(n)); my(nbad = 0); for (j=1, n1, isad = 1; for (k=1, #vad, if ((j % vad[k]) == 0, isad = 0; break); ); nbad += isad; ); nbad; } \\ Michel Marcus, Feb 25 2016


CROSSREFS

Cf. A058838, A066241.
Sequence in context: A243329 A051953 A079277 * A007104 A102627 A284652
Adjacent sequences: A066449 A066450 A066451 * A066453 A066454 A066455


KEYWORD

nonn,easy


AUTHOR

Jon Perry, Dec 29 2001


EXTENSIONS

Better definition and more terms from Diana L. Mecum, Jul 01 2007


STATUS

approved



