login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Anti-phi(n).
6

%I #29 Dec 07 2019 12:18:22

%S 1,1,2,1,4,1,4,4,3,2,8,3,7,7,9,2,8,5,10,10,8,6,19,6,12,9,9,8,22,9,12,

%T 12,15,10,31,9,11,14,24,13,23,9,24,17,16,10,35,15,23,25,20,12,40,17,

%U 34,21,18,14,37,17,24,25,41,20,39,14,31,34,33,18,42,16,32,37,41,18,44,25

%N Anti-phi(n).

%C anti-phi(n) = the number of integers < n that are not divisible by any anti-divisor of n.

%C The old definition given for this sequence was: anti-phi(n) = number of integers <= n that are coprime to the anti-divisors of n. However this does not match the entries.

%C See A066272 for definition of anti-divisor.

%H Nathaniel Johnston, <a href="/A066452/b066452.txt">Table of n, a(n) for n = 2..10000</a> [This replaces an earlier b-file computed by Diana Mecum]

%H Jon Perry, <a href="http://www.users.globalnet.co.uk/~perry/maths/antidivisorother2.htm">Anti-phi function</a> [Broken link]

%H Jon Perry, <a href="/A066272/a066272a.html">The Anti-divisor</a> [Cached copy]

%H Jon Perry, <a href="/A066272/a066272.html">The Anti-divisor: Even More Anti-Divisors</a> [Cached copy]

%e 10 has anti-divisors 3,4,7. The numbers not divisible by any of 3,4,7 and less than 10 are 1,2,5. Therefore anti-phi(10)=3.

%p # needs antidivisors() as implemented in A066272

%p A066452 := proc(n)local ad,isad,j,k,totad:ad:=antidivisors(n):totad:=0:for j from 1 to n-1 do isad:=1:for k from 1 to nops(ad) do if(j mod ad[k]=0)then isad:=0:break: fi:od:totad:=totad+isad:od:return totad:end:

%p seq(A066452(n), n=2..50); # _Nathaniel Johnston_, Apr 20 2011

%o (Python)

%o def A066452(n):

%o ....return len([x for x in range(1,n) if all([x % d for d in range(2,n) if (n % d) and (2*n) % d in [d-1,0,1]])]) # _Chai Wah Wu_, Aug 07 2014

%o (PARI) antidiv(n) = {my(v = []); for (k=2, n-1, if (abs((n % k) - k/2) < 1, v = concat(v, k));); v;}

%o a(n) = {my(vad = antidiv(n)); my(nbad = 0); for (j=1, n-1, isad = 1; for (k=1, #vad, if ((j % vad[k]) == 0, isad = 0; break); ); nbad += isad;); nbad;} \\ _Michel Marcus_, Feb 25 2016

%Y Cf. A058838, A066241.

%K nonn,easy

%O 2,3

%A _Jon Perry_, Dec 29 2001

%E Better definition and more terms from _Diana L. Mecum_, Jul 01 2007