login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066423
Composite numbers n such that the product of proper divisors of the n does not equal n.
3
4, 9, 12, 16, 18, 20, 24, 25, 28, 30, 32, 36, 40, 42, 44, 45, 48, 49, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 121, 124, 126, 128, 130, 132
OFFSET
1,1
COMMENTS
A084115(a(n))>1; complement of A084116. - Reinhard Zumkeller, May 12 2003
LINKS
EXAMPLE
The fourth composite number is 9. Its proper or aliquot divisors are 1 and 3. The product of 1 and 3 equals 3 which is not equal to 9. Therefore 9 is in the sequence.
MATHEMATICA
Composite[n_] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; Do[m = Composite[n]; If[ Apply[ Times, Drop[ Divisors[m], -1]] != m, Print[m]], {n, 1, 100} ]
Select[Range[150], CompositeQ[#]&&Times@@Most[Divisors[#]]!=#&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 18 2020 *)
PROG
(PARI) is(n)=my(d=numdiv(n)); d>4 || d==3 \\ Charles R Greathouse IV, Oct 15 2015
CROSSREFS
Sequence in context: A312854 A010386 A094120 * A355571 A376164 A072498
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Dec 26 2001
STATUS
approved