

A065832


Numbers k such that the first k binary digits found in the base10 expansion of Pi form a prime (when the decimal point is ignored).


2



2, 4, 10, 24, 29, 34, 43, 62, 76, 351, 778, 2736, 4992, 7517, 22044, 40390
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

In other words, take the decimal expansion of Pi, drop any digits greater than 1, omit the decimal point and look for prefixes in the resulting string which form base2 primes.
Numbers k such that A065830(k) is prime.


LINKS

Table of n, a(n) for n=1..16.


EXAMPLE

The first a(3)=10 binary digits of Pi are 1101110001_2 which is prime 881_10.


MATHEMATICA

p = First[ RealDigits[ Pi, 10, 10^5]]; p = p[[ Select[ Range[10^5], p[[ # ]] == 0  p[[ # ]] == 1 & ]]]; Do[ If[ PrimeQ[ FromDigits[ Take[p, n], 2]], Print[n]], {n, 1, Length[p] } ]


CROSSREFS

Cf. A065828 up to A065840, A000796, A011545, A011546, A055143, A005042, A060421, A039954, A048796.
Sequence in context: A148087 A156806 A192523 * A072753 A009884 A032023
Adjacent sequences: A065829 A065830 A065831 * A065833 A065834 A065835


KEYWORD

nonn,base,hard,more


AUTHOR

Patrick De Geest, Nov 24 2001


EXTENSIONS

More terms from Robert G. Wilson v, Nov 30 2001
a(15)a(16) from Chai Wah Wu, Apr 06 2020


STATUS

approved



