

A065797


Numbers n such that n^n  n + 1 is prime.


0




OFFSET

1,1


COMMENTS

The Mathematica program tests for probable primality. It is unclear which of the numbers n^n  n + 1 have been proved prime.  Dean Hickerson, Apr 26 2003
The first four terms result from deterministic primality tests, while terms >= 156 currently correspond to probable primes.  Giuseppe Coppoletta, Dec 26 2014


LINKS

Table of n, a(n) for n=1..8.
Eric W. Weisstein, Primality Test, MathWorld


MAPLE

select(n > isprime(n^nn+1), [$1..3000]); # Robert Israel, Dec 29 2014


MATHEMATICA

Do[If[PrimeQ[n^nn+1], Print[n]], {n, 1, 3000}]


PROG

(Sage) [n for n in (1..155) if (n^nn+1).is_prime(proof=true)] #deterministic test
(Sage) [n for n in (1..5000) if (n^nn+1).is_prime(proof=false)] #probabilistic test ## Giuseppe Coppoletta, Dec 26 2014
(PARI) is(n)=ispseudoprime(n^nn+1) \\ Charles R Greathouse IV, Jun 13 2017


CROSSREFS

Cf. A058911 (n^n+n+1).
Sequence in context: A241248 A275698 A186450 * A196273 A128772 A272106
Adjacent sequences: A065794 A065795 A065796 * A065798 A065799 A065800


KEYWORD

nonn


AUTHOR

Robert G. Wilson v, Dec 05 2001


EXTENSIONS

More terms from John Sillcox (JMS21187(AT)aol.com), Apr 23 2003


STATUS

approved



