|
|
A065644
|
|
a(n) is the smallest integer k such that floor((3/2)^k)/floor((3/2)^n) is an integer greater than 1.
|
|
0
|
|
|
2, 9, 10, 8, 18, 27, 26, 20, 24, 25, 43, 44, 229, 230, 2242, 162, 3776, 2123, 2697, 11517, 207, 1824, 35102, 6767, 6768, 50320, 51815, 1438, 50419, 50420, 51954, 51955
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
a(2) = 9 because floor((3/2)^9)/floor((3/2)^2) = 19 is the smallest integer value > 1 of the form floor((3/2)^k)/floor((3/2)^2).
|
|
MATHEMATICA
|
Array[Block[{k = 2}, While[Nand[# > 1, IntegerQ@ #] &[Floor[(3/2)^k]/Floor[(3/2)^#]], k++]; k] &, 32] (* Michael De Vlieger, Jun 14 2018 *)
|
|
PROG
|
(PARI) { for (n=1, 100, p=0; while ((a=floor((3/2)^p)/floor((3/2)^n)) < 2 || frac(a) > 0, p++); write("b065644.txt", n, " ", p) ) } \\ Harry J. Smith, Oct 25 2009
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|