OFFSET
1,2
COMMENTS
a(n) is divisible by A002275([(n+1)/2]) = (10^[(n+1)/2]-1)/9. Cf. A262806. - Max Alekseyev, Jun 02 2013
The unique sequence of binary words a(n) such that the k-th run of a(n) has length k, for k = 1..n . - Clark Kimberling, Mar 08 2024
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..44
EXAMPLE
a(2) = 100, the concatenation of one 1, two 0's.
a(3) = 100111, the concatenation of one 1, two 0's, three 1's.
a(4) = 1001110000, the concatenation of one 1, two 0's, three 1's, four 0's.
MAPLE
a:= n-> parse(cat((irem(i, 2)$i)$i=1..n)):
seq(a(n), n=1..10); # Alois P. Heinz, Mar 08 2024
MATHEMATICA
FoldList[Join, {1}, Map[ConstantArray[Mod[#, 2], #] &, Range[2, 10]]] (* Peter J. C. Moses, Mar 08 2024 *)
PROG
(PARI) { m=10; for (n=1, 44, if (n==1, a=1, m*=10; a*=m; if (n%2, a+=(m - 1)/9)); write("b065447.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 19 2009
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Lior Manor, Nov 18 2001
STATUS
approved