login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065428
Numbers k such that no x^2 mod k is prime.
6
1, 2, 3, 4, 5, 8, 12, 15, 16, 24, 28, 40, 48, 56, 60, 72, 88, 112, 120, 168, 232, 240, 280, 312, 408, 520, 760, 840, 1320, 1848
OFFSET
1,2
COMMENTS
All numbers in this sequence except 56 are idoneal (A000926) - Joerg Arndt, Jul 13 2005
No more terms < 10^6. - T. D. Noe, Aug 10 2007
No more terms < 10^11. - Charles R Greathouse IV, Dec 15 2008
Numbers x such that all x^3 mod k are nonprimes are 1, 2, 7, 9, 63, and apparently no more.
MATHEMATICA
t={}; Do[s=Union[Mod[Range[n]^2, n]]; If[Select[s, PrimeQ]=={}, AppendTo[t, n]], {n, 1000}]; t (* T. D. Noe, Aug 10 2007 *)
nx2pQ[n_]:=Module[{m=PowerMod[Range[3n], 2, n]}, Count[ FindTransientRepeat[ m, 2][[2]], _?PrimeQ]==0]; Select[Range[2000], nx2pQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 11 2019 *)
PROG
(PARI) for(n=1, 10^9, q=1; for(x=1, n-1, if(isprime(lift(Mod(x, n)^2)), q=0; break())); if(q, print1(n, ", "))); \\ edited, Joerg Arndt, Jan 28 2015
(Haskell)
a065428 n = a065428_list !! (n-1)
a065428_list = filter f [1..] where
f x = all (== 0) $
map (a010051' . (`mod` x) . a000290) [a000196 x .. x-1]
-- Reinhard Zumkeller, Aug 01 2012, Aug 15 2011
(Python)
from sympy import isprime
def ok(n): return not any(isprime((x**2)%n) for x in range(2, n))
print(list(filter(ok, range(1, 2000)))) # Michael S. Branicky, May 08 2021
CROSSREFS
Cf. A179402 (x^4 mod n).
Cf. A214583 (n such that for all k with gcd(n, k) = 1 and n > k^2, n - k^2 is prime).
Sequence in context: A122700 A048486 A179402 * A059747 A254328 A094087
KEYWORD
nonn,nice,hard,more
AUTHOR
Joerg Arndt, Nov 16 2001
STATUS
approved