Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Jul 16 2021 13:15:18
%S 1,2,3,4,5,8,12,15,16,24,28,40,48,56,60,72,88,112,120,168,232,240,280,
%T 312,408,520,760,840,1320,1848
%N Numbers k such that no x^2 mod k is prime.
%C All numbers in this sequence except 56 are idoneal (A000926) - _Joerg Arndt_, Jul 13 2005
%C No more terms < 10^6. - _T. D. Noe_, Aug 10 2007
%C No more terms < 10^11. - _Charles R Greathouse IV_, Dec 15 2008
%C Numbers x such that all x^3 mod k are nonprimes are 1, 2, 7, 9, 63, and apparently no more.
%H Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, p. 784
%t t={}; Do[s=Union[Mod[Range[n]^2,n]]; If[Select[s,PrimeQ]=={}, AppendTo[t,n]], {n,1000}]; t (* _T. D. Noe_, Aug 10 2007 *)
%t nx2pQ[n_]:=Module[{m=PowerMod[Range[3n],2,n]},Count[ FindTransientRepeat[ m,2][[2]], _?PrimeQ]==0]; Select[Range[2000],nx2pQ] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jun 11 2019 *)
%o (PARI) for(n=1, 10^9, q=1; for(x=1, n-1, if(isprime(lift(Mod(x,n)^2)), q=0; break())); if(q, print1(n, ", "))); \\ edited, _Joerg Arndt_, Jan 28 2015
%o (Haskell)
%o a065428 n = a065428_list !! (n-1)
%o a065428_list = filter f [1..] where
%o f x = all (== 0) $
%o map (a010051' . (`mod` x) . a000290) [a000196 x .. x-1]
%o -- _Reinhard Zumkeller_, Aug 01 2012, Aug 15 2011
%o (Python)
%o from sympy import isprime
%o def ok(n): return not any(isprime((x**2)%n) for x in range(2, n))
%o print(list(filter(ok, range(1, 2000)))) # _Michael S. Branicky_, May 08 2021
%Y Cf. A179402 (x^4 mod n).
%Y Cf. A010051, A000196, A000290.
%Y Cf. A214583 (n such that for all k with gcd(n, k) = 1 and n > k^2, n - k^2 is prime).
%K nonn,nice,hard,more
%O 1,2
%A _Joerg Arndt_, Nov 16 2001