login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065101 a(0) = c, a(1) = p*c^3; a(n+2) = p*c^2*a(n+1) - a(n), for p = 3, c = 2. 1
2, 24, 286, 3408, 40610, 483912, 5766334, 68712096, 818778818, 9756633720, 116260825822, 1385373276144, 16508218487906, 196713248578728, 2344050764456830, 27931895924903232, 332838700334381954 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Harry J. Smith, Table of n, a(n) for n=0,...,100

Tanya Khovanova, Recursive Sequences

J.-P. Ehrmann et al., Problem POLYA002, Integer pairs (x,y) for which (x^2+y^2)/(1+pxy) is an integer.

Index entries for linear recurrences with constant coefficients, signature (12,-1).

FORMULA

G.f.: 2/(1-12*x+x^2).

a(n) = 2*A004191(n). - R. J. Mathar, Sep 27 2014

MATHEMATICA

a[0] = c; a[1] = p*c^3; a[n_] := a[n] = p*c^2*a[n - 1] - a[n - 2]; p = 3; c = 2; Table[ a[n], {n, 0, 20} ]

PROG

(PARI): polya002(3, 2, 18). For definition of function polya002 see A052530.

(PARI) { p=3; c=2; k=p*c^2; for (n=0, 100, if (n>1, a=k*a1 - a2; a2=a1; a1=a, if (n, a=a1=k*c, a=a2=c)); write("b065101.txt", n, " ", a) ) } [From Harry J. Smith, Oct 07 2009]

CROSSREFS

Cf. A052530.

Sequence in context: A221082 A002006 A230129 * A052739 A135389 A065513

Adjacent sequences:  A065098 A065099 A065100 * A065102 A065103 A065104

KEYWORD

easy,nonn

AUTHOR

N. J. A. Sloane, Nov 12 2001

EXTENSIONS

Gen. func. from Floor van Lamoen, Feb 07 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 28 19:46 EDT 2017. Contains 287241 sequences.