login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065102
a(0) = c, a(1) = p*c^3; a(n+2) = p*c^2*a(n+1) - a(n), for p = 2, c = 3.
1
3, 54, 969, 17388, 312015, 5598882, 100467861, 1802822616, 32350339227, 580503283470, 10416708763233, 186920254454724, 3354147871421799, 60187741431137658, 1080025197889056045, 19380265820571871152
OFFSET
0,1
COMMENTS
Integer values of Fibonacci numbers * 3/8 (see 2nd formula). - Vladimir Joseph Stephan Orlovsky, Oct 25 2009
LINKS
Tanya Khovanova, Recursive Sequences
J.-P. Ehrmann et al., Problem POLYA002, Integer pairs (x,y) for which (x^2+y^2)/(1+pxy) is an integer.
FORMULA
G.f.: 3/(1 - 18*x + x^2). - Floor van Lamoen, Feb 07 2002
a(n) = 3*A049660(n+1). - R. J. Mathar, Sep 27 2014
MATHEMATICA
a[0] = c; a[1] = p*c^3; a[n_] := a[n] = p*c^2*a[n - 1] - a[n - 2]; p = 2; c = 3; Table[ a[n], {n, 0, 20} ]
Clear[f, lst, n, a] f[n_]:=Fibonacci[n]; lst={}; Do[a=f[n]*(3/8); If[IntegerQ[a], AppendTo[lst, a]], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 25 2009 *)
nxt[{a_, b_}]:={b, 18b-a}; NestList[nxt, {3, 54}, 20][[;; , 1]] (* or *) LinearRecurrence[{18, -1}, {3, 54}, 20] (* Harvey P. Dale, Apr 23 2023 *)
PROG
(PARI): polya002(2, 3, 17). For definition of function polya002 see A052530.
(PARI) { p=2; c=3; k=p*c^2; for (n=0, 100, if (n>1, a=k*a1 - a2; a2=a1; a1=a, if (n, a=a1=k*c, a=a2=c)); write("b065102.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 07 2009
CROSSREFS
Sequence in context: A157541 A374522 A182159 * A223926 A003776 A222203
KEYWORD
easy,nonn
AUTHOR
N. J. A. Sloane, Nov 12 2001
STATUS
approved