login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065102 a(0) = c, a(1) = p*c^3; a(n+2) = p*c^2*a(n+1) - a(n), for p = 2, c = 3. 1
3, 54, 969, 17388, 312015, 5598882, 100467861, 1802822616, 32350339227, 580503283470, 10416708763233, 186920254454724, 3354147871421799, 60187741431137658, 1080025197889056045, 19380265820571871152 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Integer values of Fibonacci numbers * 3/8 (see 2nd formula). - Vladimir Joseph Stephan Orlovsky, Oct 25 2009

LINKS

Harry J. Smith, Table of n, a(n) for n=0,...,100

Tanya Khovanova, Recursive Sequences

J.-P. Ehrmann et al., Problem POLYA002, Integer pairs (x,y) for which (x^2+y^2)/(1+pxy) is an integer.

Index entries for linear recurrences with constant coefficients, signature (18,-1).

FORMULA

G.f.: 3/(1 - 18*x + x^2). - Floor van Lamoen, Feb 07 2002

a(n) = 3*A049660(n+1). - R. J. Mathar, Sep 27 2014

MATHEMATICA

a[0] = c; a[1] = p*c^3; a[n_] := a[n] = p*c^2*a[n - 1] - a[n - 2]; p = 2; c = 3; Table[ a[n], {n, 0, 20} ]

Clear[f, lst, n, a] f[n_]:=Fibonacci[n]; lst={}; Do[a=f[n]*(3/8); If[IntegerQ[a], AppendTo[lst, a]], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 25 2009 *)

PROG

(PARI): polya002(2, 3, 17). For definition of function polya002 see A052530.

(PARI) { p=2; c=3; k=p*c^2; for (n=0, 100, if (n>1, a=k*a1 - a2; a2=a1; a1=a, if (n, a=a1=k*c, a=a2=c)); write("b065102.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 07 2009

CROSSREFS

Sequence in context: A174782 A119294 A157541 * A223926 A003776 A222203

Adjacent sequences:  A065099 A065100 A065101 * A065103 A065104 A065105

KEYWORD

easy,nonn

AUTHOR

N. J. A. Sloane, Nov 12 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 23 01:18 EDT 2017. Contains 285313 sequences.