OFFSET
1,2
COMMENTS
If A*10^m+B is an element, then so is (10^m-A)*10^m+B (e.g. 1233 <-> 8833 or 010100 <-> 990100)
Since A^2+B^2 = A*10^m+B can be written as 10^(2*m)+1 = (2*A-10^m)^2 + (2*B-1)^2 the number of solutions with 2*m digits (necessary leading zeros count) can be reduced to finding the ways 10^(2*m)+1 can be written as sum of 2 squares. For the following results, see A002654. Since 10^(2*m)+1 is odd and has no prime factors of the form 4*r+3 the number of ways writing 10^(2*m)+1 as sum of 2 squares is just tau(10^(2*m)+1) (order matters). Since changing the order does not lead to a new solution (2*A-10^m is always the even square and 2*B-1 is always the odd square) and since the trivial 10^(2*m)+1 = (10^m)^2 + 1^2 leads to the ambiguous A = 0 and B = 1 there are only tau(10^(2*m)+1)/2-1 relevant ways. Because of the transformation from A to (10^m-A) every of these possibilities leads to a pair of solutions. So the number of solutions with 2*m digits is tau(10^(2*m)+1)-2, see A064943
LINKS
EXAMPLE
8833 = 88^2 + 33^2, 5882353 = 0588^2 + 2353^2.
MAPLE
with (numtheory): for m from 1 to 10 do: for i in sum2sqr(10^(2*m)+1) do: if i[1] > 1 and i[1] < 10^m then if type(i[1], odd) then a := (i[2]+10^m)/2: b := (i[1]+1)/2: else a := (i[1]+10^m)/2: b := (i[2]+1)/2: fi: print("Length =", 2*m, "Solution =", (10^m-a)*10^m+b): print(Length = 2*m, Solution = a*10^m+b): fi: od: od:
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Ulrich Schimke (ulrschimke(AT)aol.com)
EXTENSIONS
Edited by N. J. A. Sloane, Jul 31 2007
STATUS
approved