The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064942 Decimal numbers n such that after possibly prefixing leading 0's to n, the resulting number n' can be broken into 2 numbers of equal length, n' = xy, such that x^2+y^2 = n (y may also have leading zeros). 6
 1, 1233, 8833, 10100, 990100, 5882353, 94122353, 99009901, 100010000, 1765038125, 2584043776, 7416043776, 8235038125, 9901009901, 48600220401, 116788321168, 123288328768, 601300773101, 876712328768, 883212321168, 990100990100 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS If A*10^m+B is an element, then so is (10^m-A)*10^m+B (e.g. 1233 <-> 8833 or 010100 <-> 990100) Since A^2+B^2 = A*10^m+B can be written as 10^(2*m)+1 = (2*A-10^m)^2 + (2*B-1)^2 the number of solutions with 2*m digits (necessary leading zeros count) can be reduced to finding the ways 10^(2*m)+1 can be written as sum of 2 squares. For the following results, see A002654. Since 10^(2*m)+1 is odd and has no prime factors of the form 4*r+3 the number of ways writing 10^(2*m)+1 as sum of 2 squares is just tau(10^(2*m)+1) (order matters). Since changing the order does not lead to a new solution (2*A-10^m is always the even square and 2*B-1 is always the odd square) and since the trivial 10^(2*m)+1 = (10^m)^2 + 1^2 leads to the ambiguous A = 0 and B = 1 there are only tau(10^(2*m)+1)/2-1 relevant ways. Because of the transformation from A to (10^m-A) every of these possibilities leads to a pair of solutions. So the number of solutions with 2*m digits is tau(10^(2*m)+1)-2, see A064943 LINKS IBM Corp., IBM March 2000 Challenge solution EXAMPLE 8833 = 88^2 + 33^2, 5882353 = 0588^2 + 2353^2. MAPLE with (numtheory): for m from 1 to 10 do: for i in sum2sqr(10^(2*m)+1) do: if i > 1 and i < 10^m then if type(i, odd) then a := (i+10^m)/2: b := (i+1)/2: else a := (i+10^m)/2: b := (i+1)/2: fi: print("Length =", 2*m, "Solution =", (10^m-a)*10^m+b): print(Length = 2*m, Solution = a*10^m+b): fi: od: od: CROSSREFS Cf. A064943 for the number of solutions, A055616 for the solutions where leading zeros are not allowed, A055617, A055618, A055619 for some infinite subsequences and A002654 for finding the number of ways writing an integer as sum of two squares. A101311 is another version. Sequence in context: A183881 A270540 A206272 * A101311 A055616 A104971 Adjacent sequences:  A064939 A064940 A064941 * A064943 A064944 A064945 KEYWORD nonn,base AUTHOR Ulrich Schimke (ulrschimke(AT)aol.com) EXTENSIONS Edited by N. J. A. Sloane, Jul 31 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 10:10 EDT 2021. Contains 346447 sequences. (Running on oeis4.)