login
A064939
a(n) = Sum_{i=1..omega(n)} i*p_i, where {p_i}, i=1..omega(n) is the increasing sequence of prime divisors of n, where omega is the number of distinct prime factors of n (A001221).
2
0, 2, 3, 2, 5, 8, 7, 2, 3, 12, 11, 8, 13, 16, 13, 2, 17, 8, 19, 12, 17, 24, 23, 8, 5, 28, 3, 16, 29, 23, 31, 2, 25, 36, 19, 8, 37, 40, 29, 12, 41, 29, 43, 24, 13, 48, 47, 8, 7, 12, 37, 28, 53, 8, 27, 16, 41, 60, 59, 23, 61, 64, 17, 2, 31, 41, 67, 36, 49, 33, 71, 8, 73, 76, 13, 40
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{p|n, q|n, p and q prime, p <= q} q. - Wesley Ivan Hurt, Aug 20 2020
EXAMPLE
factorset(30) = {2,3,5}, thus a(30) = 1*2 + 2*3 + 3*5 = 23.
MAPLE
with(numtheory): seq(add(i*sort(convert(factorset(n), 'list'))[i], i=1..nops(factorset(n))), n=1..200);
MATHEMATICA
ispd[n_]:=Module[{f=FactorInteger[n][[All, 1]]}, Total[f Range[ Length[f]]]]; Join[{0}, Array[ispd, 80, 2]] (* Harvey P. Dale, Aug 06 2017 *)
PROG
(PARI) { for (n=1, 1000, f=factor(n)~; a=sum(i=1, length(f), i*f[1, i]); write("b064939.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 30 2009
CROSSREFS
Cf. A001221 (omega).
Sequence in context: A270709 A323382 A372597 * A248012 A151549 A086989
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Oct 27 2001
STATUS
approved