login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064907
Semiprimes p1*p2 such that p2 mod p1 = 9, with p2 > p1.
1
341, 583, 731, 793, 893, 1067, 1469, 1793, 1807, 1943, 2201, 2323, 2483, 2519, 2761, 3043, 3071, 3487, 3497, 3781, 4213, 4439, 4511, 4777, 4841, 4849, 4939, 5497, 5809, 5933, 5947, 6511, 6539, 6989, 7093, 7117, 7391, 7493, 7601, 7613, 7783, 7891, 7967
OFFSET
1,1
MATHEMATICA
spQ[n_]:=Module[{fi=FactorInteger[n][[All, 1]]}, PrimeOmega[n]==2&&Mod[ fi[[2]], fi[[1]]]==9]; Select[Range[8000], spQ]//Quiet (* Harvey P. Dale, Aug 02 2019 *)
PROG
(Python)
from sympy import factorint
def is_A064907(n):
f = factorint(n)
return (sum([f[i] for i in f]) == 2) and (max(f) % min(f) == 9)
def list_A064907(cnt):
inx = 0
n = 1
an = []
while inx < cnt:
if is_A064907(n):
an.append(n)
inx += 1
n += 2
return an #John Cerkan, Apr 14 2018
(PARI) isok(n) = my(f = factor(n)); (#f~ == 2) && (vecmax(f[, 2]) < 2) && ((f[2, 1] % f[1, 1]) == 9); \\ Michel Marcus, Apr 16 2018
CROSSREFS
Cf. A001358 (p2 mod p1 = 0), A064899-A064911.
Sequence in context: A328691 A006970 A007011 * A043685 A043576 A215326
KEYWORD
nonn
AUTHOR
Patrick De Geest, Oct 13 2001
EXTENSIONS
Offset changed by John Cerkan, Apr 12 2018
STATUS
approved