The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064901 Semiprimes p1*p2 such that p2 > p1 and p2 mod p1 = 3. 1
 65, 115, 119, 215, 217, 265, 365, 377, 413, 415, 511, 515, 517, 565, 629, 707, 779, 815, 865, 965, 1099, 1115, 1165, 1207, 1243, 1315, 1391, 1393, 1415, 1465, 1501, 1565, 1589, 1687, 1727, 1765, 1769, 1865, 1883, 1915, 1969, 1981, 2165, 2177, 2215 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The semiprimes must be squarefree, since p1 does not divide p2. - Michael De Vlieger, Apr 12 2018 LINKS John Cerkan, Table of n, a(n) for n = 1..10000 MATHEMATICA Select[Range@ 2215, And[#[[All, -1]] == {1, 1}, Mod[#2, #1] == 3 & @@ #[[All, 1]]] &@ FactorInteger[#] &] (* Michael De Vlieger, Apr 12 2018 *) PROG (Python) from sympy import factorint def is_A064901(n):     f = factorint(n)     return (sum([f[i] for i in f]) == 2) and (max(f) % min(f) == 3) def first_A064901(n):     x = 1     an = []     while len(an) < n:         if is_A064901(x): an.append(x)         x += 2     return an # John Cerkan, Apr 14 2018 (PARI) isok(n) = my(f = factor(n)); (#f~ == 2) && (vecmax(f[, 2]) < 2) && ((f[2, 1] % f[1, 1]) == 3); \\ Michel Marcus, Apr 16 2018 CROSSREFS Cf. A001358 (p2 mod p1 = 0), A006881, A064899-A064911. Sequence in context: A300094 A342259 A075893 * A039482 A247676 A118159 Adjacent sequences:  A064898 A064899 A064900 * A064902 A064903 A064904 KEYWORD nonn AUTHOR Patrick De Geest, Oct 13 2001 EXTENSIONS Name clarified by John Cerkan, Apr 13 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 05:11 EDT 2021. Contains 345395 sequences. (Running on oeis4.)