OFFSET
1,2
COMMENTS
The sequence is an intra-block permutation of positive integers. - Boris Putievskiy, Mar 13 2024
LINKS
Boris Putievskiy, Table of n, a(n) for n = 1..9870
Boris Putievskiy, Transformations [Of] Integer Sequences And Pairing Functions, arXiv preprint arXiv:1212.2732 [math.CO], 2012.
Boris Putievskiy, Integer Sequences: Irregular Arrays and Intra-Block Permutations, arXiv:2310.18466 [math.CO], 2023.
FORMULA
From Boris Putievskiy, Mar 29 2024: (Start)
T(n,k) = (n-1)*n/2 + min(2*k-1, 2*(n-k+1)), for 1 <= k <= n.
(End)
EXAMPLE
From Boris Putievskiy, Mar 13 2024: (Start)
Start of the sequence as a triangular array T(n,k) read by rows:
k=1 2 3 4 5 6
n=1: 1;
n=2: 2, 3;
n=3: 4, 6, 5;
n=4: 7, 9, 10, 8;
n=5: 11, 13, 15, 14, 12;
n=6: 16, 18, 20, 21, 19, 17;
Row n contains a permutation block of the n numbers (n-1)*n/2+1, (n-1)*n/2+2, ..., (n-1)*n/2+n to themselves.
Subtracting (n-1)*n/2 from each term in row n gives A194959, in which each row is a permutation of 1..n:
1;
1, 2;
1, 3, 2;
1, 3, 4, 2;
1, 3, 5, 4, 2;
1, 3, 5, 6, 4, 2; (End)
MATHEMATICA
T[n_, k_] := (n - 1)*n/2 + Min[2*k - 1, 2*(n - k + 1)];
Nmax = 6; Table[T[n, k], {n, 1, Nmax}, {k, 1, n}] // Flatten (* Boris Putievskiy, Mar 29 2024 *)
PROG
(PARI) a(n) = my(A = (sqrtint(8*n) + 1)\2, B = A*(A - 1)/2, C = n - B); B + if(C <= (A+1)\2, 2*C - 1, 2*(A - C + 1)) \\ Mikhail Kurkov, Mar 12 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 16 2001
EXTENSIONS
More terms from Vladeta Jovovic, Oct 18 2001
STATUS
approved