login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064478
If n = Product p(k)^e(k) then a(n) = Product (p(k)+1)^e(k), a(0) = 1, a(1)=2.
8
1, 2, 3, 4, 9, 6, 12, 8, 27, 16, 18, 12, 36, 14, 24, 24, 81, 18, 48, 20, 54, 32, 36, 24, 108, 36, 42, 64, 72, 30, 72, 32, 243, 48, 54, 48, 144, 38, 60, 56, 162, 42, 96, 44, 108, 96, 72, 48, 324, 64, 108, 72, 126, 54, 192, 72, 216, 80, 90, 60, 216, 62, 96, 128, 729, 84, 144
OFFSET
0,2
COMMENTS
a(0)=1 and a(1)=2 by convention (which makes a(n) not multiplicative).
The alternate convention a(0)=0 and a(1)=1 would have made a(n) completely multiplicative (cf. A003959 for completely multiplicative version.) - Daniel Forgues, Nov 17 2009
LINKS
MAPLE
a:= n-> `if`(n<2, n+1, mul((i[1]+1)^i[2], i=ifactors(n)[2])):
seq(a(n), n=0..80); # Alois P. Heinz, Sep 13 2017
MATHEMATICA
a[0] = 1; a[1] = 2; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]]+1)^fi[[All, 2]])); Table[a[n], {n, 0, 66}](* Jean-François Alcover, Nov 14 2011 *)
f[n_] := Times @@ ((1 + #[[1]])^#[[2]] & /@ FactorInteger@ n); Array[f, 67, 0] (* Robert G. Wilson v, Sep 13 2017 *)
PROG
(PARI) a(n) = if(n<=1, n + 1, my(f=factor(n)); prod(i=1, #f~, (1 + f[i, 1])^f[i, 2])) \\ Harry J. Smith, Sep 15 2009
(Haskell)
a064478 n = if n <= 1 then n + 1 else a003959 n
-- Reinhard Zumkeller, Feb 28 2013
CROSSREFS
Cf. A064476, A064479, A003958. Apart from initial terms, same as A003959.
Sequence in context: A234742 A277711 A060866 * A111798 A375015 A249543
KEYWORD
nonn,nice,easy
AUTHOR
N. J. A. Sloane, Oct 06 2001
EXTENSIONS
More terms from Vladeta Jovovic, Oct 06 2001
Edited by Daniel Forgues, Nov 18 2009
STATUS
approved