login
A064322
Triply triangular numbers.
5
0, 1, 21, 231, 1540, 7260, 26796, 82621, 222111, 536130, 1186570, 2445366, 4747821, 8763391, 15487395, 26357430, 43398586, 69401871, 108140571, 164629585, 245433090, 359026206, 516216646, 730632651, 1019283825, 1403201800, 1908167976, 2565535896, 3413156131
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = A000217(A000217(A000217(n))) = n*(n+1)*(n^2 + n + 2)*(n^4 + 2n^3 + 3n^2 + 2n + 8)/128 = A002817(n)*(A002817(n) + 1)/2.
G.f.: x*(1 + 12*x + 78*x^2 + 133*x^3 + 78*x^4 + 12*x^5 + x^6)/(1 - x)^9. - Colin Barker, Apr 19 2012
EXAMPLE
a(4) = 1540 because 4th triangular number is 10, 10th triangular number is 55 and 55th triangular number is 1540.
MAPLE
a:= n-> ((k-> binomial(k+1, 2))@@3)(n):
seq(a(n), n=0..30); # Alois P. Heinz, Apr 19 2012
MATHEMATICA
f[n_] := n(n + 1)/2; Table[ Nest[f, n, 3], {n, 0, 25}] (* Robert G. Wilson v, Jun 30 2004 *)
PROG
(PARI) a(n) = { my(Tri(m)= m*(m + 1)/2); Tri(Tri(Tri(n))) } \\ Harry J. Smith, Sep 11 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Oct 15 2001
STATUS
approved