login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064322
Triply triangular numbers.
5
0, 1, 21, 231, 1540, 7260, 26796, 82621, 222111, 536130, 1186570, 2445366, 4747821, 8763391, 15487395, 26357430, 43398586, 69401871, 108140571, 164629585, 245433090, 359026206, 516216646, 730632651, 1019283825, 1403201800, 1908167976, 2565535896, 3413156131
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = A000217(A000217(A000217(n))) = n*(n+1)*(n^2 + n + 2)*(n^4 + 2n^3 + 3n^2 + 2n + 8)/128 = A002817(n)*(A002817(n) + 1)/2.
G.f.: x*(1 + 12*x + 78*x^2 + 133*x^3 + 78*x^4 + 12*x^5 + x^6)/(1 - x)^9. - Colin Barker, Apr 19 2012
EXAMPLE
a(4) = 1540 because 4th triangular number is 10, 10th triangular number is 55 and 55th triangular number is 1540.
MAPLE
a:= n-> ((k-> binomial(k+1, 2))@@3)(n):
seq(a(n), n=0..30); # Alois P. Heinz, Apr 19 2012
MATHEMATICA
f[n_] := n(n + 1)/2; Table[ Nest[f, n, 3], {n, 0, 25}] (* Robert G. Wilson v, Jun 30 2004 *)
PROG
(PARI) a(n) = { my(Tri(m)= m*(m + 1)/2); Tri(Tri(Tri(n))) } \\ Harry J. Smith, Sep 11 2009
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Henry Bottomley, Oct 15 2001
STATUS
approved