Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Dec 26 2024 15:20:11
%S 0,1,21,231,1540,7260,26796,82621,222111,536130,1186570,2445366,
%T 4747821,8763391,15487395,26357430,43398586,69401871,108140571,
%U 164629585,245433090,359026206,516216646,730632651,1019283825,1403201800,1908167976,2565535896,3413156131
%N Triply triangular numbers.
%H Harry J. Smith, <a href="/A064322/b064322.txt">Table of n, a(n) for n = 0..400</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).
%F a(n) = A000217(A000217(A000217(n))) = n*(n+1)*(n^2 + n + 2)*(n^4 + 2n^3 + 3n^2 + 2n + 8)/128 = A002817(n)*(A002817(n) + 1)/2.
%F G.f.: x*(1 + 12*x + 78*x^2 + 133*x^3 + 78*x^4 + 12*x^5 + x^6)/(1 - x)^9. - _Colin Barker_, Apr 19 2012
%e a(4) = 1540 because 4th triangular number is 10, 10th triangular number is 55 and 55th triangular number is 1540.
%p a:= n-> ((k-> binomial(k+1,2))@@3)(n):
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Apr 19 2012
%t f[n_] := n(n + 1)/2; Table[ Nest[f, n, 3], {n, 0, 25}] (* _Robert G. Wilson v_, Jun 30 2004 *)
%o (PARI) a(n) = { my(Tri(m)= m*(m + 1)/2); Tri(Tri(Tri(n))) } \\ _Harry J. Smith_, Sep 11 2009
%Y Cf. A000217, A002817, A066370.
%K nonn,easy,changed
%O 0,3
%A _Henry Bottomley_, Oct 15 2001