login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064123
Number of divisors of 5^n - 1 that are relatively prime to 5^m - 1 for all 0 < m < n.
1
3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 8, 4, 4, 8, 4, 2, 16, 4, 16, 2, 8, 4, 4, 4, 4, 4, 16, 4, 8, 8, 4, 4, 4, 8, 4, 4, 8, 4, 2, 2, 2, 4, 8, 4, 8, 8, 16, 2, 2, 4, 4, 4, 8, 8, 8, 8, 8, 4, 32, 16, 16, 4, 4, 8, 8, 8, 32, 4, 8, 4, 8, 4, 4, 16, 8, 4, 8, 16, 8, 2, 64, 2, 4, 2, 8, 8, 16, 4, 8, 8
OFFSET
1,1
LINKS
Sam Wagstaff, Cunningham Project, Factorizations of 5^n-1, n odd, n<376
MATHEMATICA
a = {1}; Do[ d = Divisors[ 5^n - 1 ]; l = Length[ d ]; c = 0; k = 1; While[ k < l + 1, If[ Union[ GCD[ a, d[ [ k ] ] ] ] == {1}, c++ ]; k++ ]; Print[ c ]; a = Union[ Flatten[ Append[ a, Transpose[ FactorInteger[ 5^n - 1 ] ][ [ 1 ] ] ] ] ], {n, 1, 58} ]
PROG
(PARI) { allocatemem(932245000); for (n=1, 119, d=divisors(5^n - 1); l=length(d); a=0; for (i=1, l, t=1; for (m=1, n - 1, p=5^m - 1; if (gcd(d[i], p)!=1, t=0; break)); if (t, a++)); write("b064123.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 08 2009
CROSSREFS
Cf. A063982.
Sequence in context: A106267 A096101 A104890 * A024703 A102845 A064126
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 10 2001
EXTENSIONS
More terms from Harry J. Smith, Sep 08 2009
STATUS
approved