The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064122 Number of divisors of 3^n - 1 that are relatively prime to 3^m - 1 for all 0 < m < n. 1
 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 2, 8, 4, 8, 4, 8, 2, 2, 8, 4, 2, 4, 4, 8, 2, 8, 4, 4, 4, 8, 2, 16, 8, 32, 4, 4, 4, 8, 4, 4, 4, 8, 8, 4, 2, 4, 4, 2, 2, 8, 4, 8, 4, 4, 2, 2, 2, 16, 8, 8, 4, 8, 16, 8, 4, 8, 4, 16, 4, 4, 2, 8, 8, 8, 4, 4, 4, 4, 8, 4, 4, 8, 4, 4, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Harry J. Smith, Table of n, a(n) for n = 1..167 Sam Wagstaff, Cunningham Project, Factorizations of 3^n-1, n odd, n<540 MATHEMATICA a = {1}; Do[ d = Divisors[ 3^n - 1 ]; l = Length[ d ]; c = 0; k = 1; While[ k < l + 1, If[ Union[ GCD[ a, d[ [ k ] ] ] ] == {1}, c++ ]; k++ ]; Print[ c ]; a = Union[ Flatten[ Append[ a, Transpose[ FactorInteger[ 3^n - 1 ] ][ [ 1 ] ] ] ] ], {n, 1, 100} ] PROG (PARI) { allocatemem(932245000); for (n=1, 167, d=divisors(3^n - 1); l=length(d); a=0; for (i=1, l, t=1; for (m=1, n - 1, p=3^m - 1; if (gcd(d[i], p)!=1, t=0; break)); if (t, a++)); write("b064122.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 08 2009 CROSSREFS Cf. A063982. Sequence in context: A109129 A304486 A188550 * A323424 A334098 A263922 Adjacent sequences:  A064119 A064120 A064121 * A064123 A064124 A064125 KEYWORD nonn AUTHOR Robert G. Wilson v, Sep 10 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 05:55 EST 2021. Contains 349363 sequences. (Running on oeis4.)