
LINKS

Table of n, a(n) for n=3..13.
O. Aichholzer and H. Krasser, The point set order type data base: a collection of applications and results, pp. 1720 in Abstracts 13th Canadian Conference on Computational Geometry (CCCG '01), Waterloo, Aug. 1315, 2001.
O. Aichholzer, R. FabilaMonroy, T. Hackl, C. Huemer, A. Pilz, and B. Vogtenhuber. Lower bounds for the number of small convex kholes. Computational Geometry: Theory and Applications, 47(5):605613, 2014.
O. Aichholzer, R. FabilaMonroy, T. Hackl, C. Huemer, A. Pilz, B. Vogtenhuber, A set of 12 points minimizing the numbers of convex 3, 4, and 5holes.
O. Aichholzer, T. Hackl, and M. Scheucher, A set of 13 points minimizing the numbers of convex 3, 4, and 5holes.
M. Scheucher, Counting Convex 5Holes, Bachelor's thesis, Graz University of Technology, Austria, 2013, in German.


CROSSREFS

Cf. A063542 and A276096 for empty convex 4 and 5gons (a.k.a. kholes), respectively. The binomal coefficient C(n,3), cf. A000292, is the number of (not necessarily empty) triangles.
Sequence in context: A084537 A002061 A247890 * A206246 A171965 A011898
Adjacent sequences: A063538 A063539 A063540 * A063542 A063543 A063544
